Accuracy and uncertainty of digital soil mapping approaches to extract and transfer soil information from reference area
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/28220 |
Resumo: | Contradicting the need for detailed maps, we currently experience scarcity of investments on soil surveys in Brazil. In this sense, it is necessary to resort to techniques that allow the expansion of the mapped areas, at relatively lower costs. From this perspective, this work focused on the investigation of procedures and tools for the retrieving and extrapolation of soil type information from a reference area to its surroundings. The objectives included: (i) retrieving information from a detailed soil map of a reference area; (ii) to evaluate the transferability of information to a larger area, which preserves similar environmental characteristics similar to those of the pilot area; (iii) evaluate the accuracy and uncertainty of the inference models. From a Digital Elevation Model, a series of topographic indexes were calculated, which were correlated with the soil classes, represented by mapping units of the legacy map. The objective was to infer from the soil-landscape relationship of the pilot area, the distribution of soil types in the extrapolation area. For that duty, three inference procedures were applied, one data-driven (Random Forest (RF)) and two others, based on knowledge (Rule-based reasoning and Case-based reasoning - ArcSIE). Regarding RF, 52 models were graded from a routine of tuning and different combinations of training data. Although considered a robust predictor, RF demonstrated sensitivity to training strategies. Most of the models presented low accuracy. However, at least one model with more than 80% of global accuracy was obtained. Regarding RBR and CBR procedures, only the former resulted in a map with good precision. The advantage of using knowledge-based systems like RBR is to make explicit the soil-landscape relationship through a systematic set of rules. By accessing the uncertainty of the predictions, in addition to evaluating the behavior of the models, it was possible to observe the complexity of the soil-landscape relationship of Oxisols and Inceptisols, characteristic of tropical environments. This is particularly important for model review and sampling planning in the search for more accurate maps. |
id |
UFLA_8d876c7c44b5ef9b6b608ea6011bc840 |
---|---|
oai_identifier_str |
oai:localhost:1/28220 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Accuracy and uncertainty of digital soil mapping approaches to extract and transfer soil information from reference areaAcurácia e incerteza em abordagens de mapeamento digital de solos para extrair e transferir informações pedológicas a partir de área de referenciaMapeamento do solo – ModelosSoil mapping – ModelsCiência do SoloContradicting the need for detailed maps, we currently experience scarcity of investments on soil surveys in Brazil. In this sense, it is necessary to resort to techniques that allow the expansion of the mapped areas, at relatively lower costs. From this perspective, this work focused on the investigation of procedures and tools for the retrieving and extrapolation of soil type information from a reference area to its surroundings. The objectives included: (i) retrieving information from a detailed soil map of a reference area; (ii) to evaluate the transferability of information to a larger area, which preserves similar environmental characteristics similar to those of the pilot area; (iii) evaluate the accuracy and uncertainty of the inference models. From a Digital Elevation Model, a series of topographic indexes were calculated, which were correlated with the soil classes, represented by mapping units of the legacy map. The objective was to infer from the soil-landscape relationship of the pilot area, the distribution of soil types in the extrapolation area. For that duty, three inference procedures were applied, one data-driven (Random Forest (RF)) and two others, based on knowledge (Rule-based reasoning and Case-based reasoning - ArcSIE). Regarding RF, 52 models were graded from a routine of tuning and different combinations of training data. Although considered a robust predictor, RF demonstrated sensitivity to training strategies. Most of the models presented low accuracy. However, at least one model with more than 80% of global accuracy was obtained. Regarding RBR and CBR procedures, only the former resulted in a map with good precision. The advantage of using knowledge-based systems like RBR is to make explicit the soil-landscape relationship through a systematic set of rules. By accessing the uncertainty of the predictions, in addition to evaluating the behavior of the models, it was possible to observe the complexity of the soil-landscape relationship of Oxisols and Inceptisols, characteristic of tropical environments. This is particularly important for model review and sampling planning in the search for more accurate maps.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Contrapondo a necessidade de mapas mais detalhados, atualmente enfrentamos a escassez de recursos destinados ao levantamento de solos. Neste sentido, é preciso recorrer a técnicas que viabilizem a expansão das áreas mapeadas, a custos relativamente mais baixos. Sob essa perspectiva, este trabalho focou na investigação de procedimentos e ferramentas para a extrapolação de informações sobre classes de solo de uma área de referência para seu entorno. Os objetivos incluíram: (i) recuperar informações de um mapa de solos detalhado de uma área de referência; (ii) avaliar a transferibilidade da informação para uma área 15 vezes maior, que preserva características de paisagem semelhantes às da área piloto; (iii) avaliar a acurácia e a incerteza dos modelos de inferência. A partir de um Modelo Digital de Elevação, calculou-se uma série de índice topográficos, os quais foram correlacionados com as classes de solo, representadas por unidades de mapeamento do mapa legado. O objetivo, portanto, foi inferir, a partir da relação solo-paisagem da área piloto, a distribuição dos tipos de solo na área de extrapolação. Para tanto, foram aplicados três procedimentos de inferência, um baseado em dados (Random Forest (RF)) e outros dois baseados no conhecimento (Rule-based reasoning-RBR e Case-based reasoning-CBR - ArcSIE). Com relação a RF, foram grados 52 modelos a partir de uma rotina de ajustes e diferentes combinações de dados de treinamento. Embora considerado um preditor robusto, a RF demonstrou sensibilidade as estratégias de treinamento. Grande parte dos modelos apresentou baixa precisão, contudo, obteve-se ao menos um modelo com mais de 80% de acurácia global. Em relação aos procedimentos RBR e CBR, apenas o primeiro resultou em um mapa com boa precisão. A vantagem da utilização de sistemas baseados no conhecimento com o RBR é o de tornar explicita a relação solo-paisagem através de um conjunto sistematizado de regras. Ao acessar a incerteza das predições, além de avaliar o comportamento dos modelos, foi possível observar a complexidade da relação solo paisagem, característica de ambientes tropicais. Este aspecto é particularmente importante para revisão de modelos e planejamento de coletas de solo na busca por mapas com maior acurácia.Universidade Federal de LavrasPrograma de Pós-Graduação em Ciência do SoloUFLAbrasilDepartamento de Ciência do SoloMenezes, Michele Duarte deCuri, NiltonMenezes, Michele Duarte deSilva, Sérgio Henrique GodinhoCeddia, Marcos BacisMachado, Diego Fernandes Terra2017-12-07T11:52:35Z2017-12-07T11:52:35Z2017-12-072017-09-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMACHADO, D. F. T. Accuracy and uncertainty of digital soil mapping approaches to extract and transfer soil information from reference area. 2017. 114 p. Dissertação (Mestrado em Ciência do Solo)-Universidade Federal de Lavras, Lavras, 2017.http://repositorio.ufla.br/jspui/handle/1/28220enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2018-12-07T15:42:09Zoai:localhost:1/28220Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2018-12-07T15:42:09Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Accuracy and uncertainty of digital soil mapping approaches to extract and transfer soil information from reference area Acurácia e incerteza em abordagens de mapeamento digital de solos para extrair e transferir informações pedológicas a partir de área de referencia |
title |
Accuracy and uncertainty of digital soil mapping approaches to extract and transfer soil information from reference area |
spellingShingle |
Accuracy and uncertainty of digital soil mapping approaches to extract and transfer soil information from reference area Machado, Diego Fernandes Terra Mapeamento do solo – Modelos Soil mapping – Models Ciência do Solo |
title_short |
Accuracy and uncertainty of digital soil mapping approaches to extract and transfer soil information from reference area |
title_full |
Accuracy and uncertainty of digital soil mapping approaches to extract and transfer soil information from reference area |
title_fullStr |
Accuracy and uncertainty of digital soil mapping approaches to extract and transfer soil information from reference area |
title_full_unstemmed |
Accuracy and uncertainty of digital soil mapping approaches to extract and transfer soil information from reference area |
title_sort |
Accuracy and uncertainty of digital soil mapping approaches to extract and transfer soil information from reference area |
author |
Machado, Diego Fernandes Terra |
author_facet |
Machado, Diego Fernandes Terra |
author_role |
author |
dc.contributor.none.fl_str_mv |
Menezes, Michele Duarte de Curi, Nilton Menezes, Michele Duarte de Silva, Sérgio Henrique Godinho Ceddia, Marcos Bacis |
dc.contributor.author.fl_str_mv |
Machado, Diego Fernandes Terra |
dc.subject.por.fl_str_mv |
Mapeamento do solo – Modelos Soil mapping – Models Ciência do Solo |
topic |
Mapeamento do solo – Modelos Soil mapping – Models Ciência do Solo |
description |
Contradicting the need for detailed maps, we currently experience scarcity of investments on soil surveys in Brazil. In this sense, it is necessary to resort to techniques that allow the expansion of the mapped areas, at relatively lower costs. From this perspective, this work focused on the investigation of procedures and tools for the retrieving and extrapolation of soil type information from a reference area to its surroundings. The objectives included: (i) retrieving information from a detailed soil map of a reference area; (ii) to evaluate the transferability of information to a larger area, which preserves similar environmental characteristics similar to those of the pilot area; (iii) evaluate the accuracy and uncertainty of the inference models. From a Digital Elevation Model, a series of topographic indexes were calculated, which were correlated with the soil classes, represented by mapping units of the legacy map. The objective was to infer from the soil-landscape relationship of the pilot area, the distribution of soil types in the extrapolation area. For that duty, three inference procedures were applied, one data-driven (Random Forest (RF)) and two others, based on knowledge (Rule-based reasoning and Case-based reasoning - ArcSIE). Regarding RF, 52 models were graded from a routine of tuning and different combinations of training data. Although considered a robust predictor, RF demonstrated sensitivity to training strategies. Most of the models presented low accuracy. However, at least one model with more than 80% of global accuracy was obtained. Regarding RBR and CBR procedures, only the former resulted in a map with good precision. The advantage of using knowledge-based systems like RBR is to make explicit the soil-landscape relationship through a systematic set of rules. By accessing the uncertainty of the predictions, in addition to evaluating the behavior of the models, it was possible to observe the complexity of the soil-landscape relationship of Oxisols and Inceptisols, characteristic of tropical environments. This is particularly important for model review and sampling planning in the search for more accurate maps. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-07T11:52:35Z 2017-12-07T11:52:35Z 2017-12-07 2017-09-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MACHADO, D. F. T. Accuracy and uncertainty of digital soil mapping approaches to extract and transfer soil information from reference area. 2017. 114 p. Dissertação (Mestrado em Ciência do Solo)-Universidade Federal de Lavras, Lavras, 2017. http://repositorio.ufla.br/jspui/handle/1/28220 |
identifier_str_mv |
MACHADO, D. F. T. Accuracy and uncertainty of digital soil mapping approaches to extract and transfer soil information from reference area. 2017. 114 p. Dissertação (Mestrado em Ciência do Solo)-Universidade Federal de Lavras, Lavras, 2017. |
url |
http://repositorio.ufla.br/jspui/handle/1/28220 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Ciência do Solo UFLA brasil Departamento de Ciência do Solo |
publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Ciência do Solo UFLA brasil Departamento de Ciência do Solo |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439037572317184 |