Climate-related variables may not improve monthly scale rainfall predictions by artificial neural networks for the metropolitan region of Belo Horizonte, Brazil

Detalhes bibliográficos
Autor(a) principal: Silva, Mateus Alexandre da
Data de Publicação: 2023
Outros Autores: Merlo, Marina Neves, Thebaldi, Michael Silveira, Ferreira, Danton Diego, Schwerz, Felipe, Deus, Fábio Ponciano de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/56803
Resumo: Artificial neural networks (ANNs) may experience problems due to insufficient or uninformative predictors, and these problems are common for complex predictions such as those for rainfall. However, some studies point to the use of climate variables and anomalies as predictors to make the forecast more accurate. This research aimed to predict the monthly rainfall, one month in advance, in four municipalities of the metropolitan region of Belo Horizonte using an ANN trained with different climate variables; additionally, it aimed to indicate the suitability of such variables as inputs to these models. The models were developed using the MATLAB® software Version R2011a using the NNTOOL toolbox. The ANNs were trained by the multilayer perceptron architecture and the feedforward and backpropagation algorithm using two combinations of input data, with two and six variables, and one combination of input data with the three most correlated variables to observed rainfall from 1970 to 1999 to predict the rainfall from 2000 to 2009. The climate variable most correlated with the rainfall of the following month was the average compensated temperature. Even when using the variables most correlated with precipitation as predictors (0.66 ≤ nt index ≤ 1.26), there was no notable improvement in the predictive capacity of the models when compared to those that did not use climate variables as predictors (0.55 ≤ nt index ≤ 0.80).
id UFLA_8f2e6cfc6347a116e5659522ab28dbc3
oai_identifier_str oai:localhost:1/56803
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Climate-related variables may not improve monthly scale rainfall predictions by artificial neural networks for the metropolitan region of Belo Horizonte, BrazilVariáveis relacionadas ao clima podem não melhorar previsões de precipitação pluvial em escala mensal realizadas por redes neurais artificiais para a região metropolitana de Belo Horizonte, BrasilArtificial intelligenceEl Nino Southern Oscillation (ENSO)Hydrological modellingInteligência artificialModelagem hidrológicaArtificial neural networks (ANNs) may experience problems due to insufficient or uninformative predictors, and these problems are common for complex predictions such as those for rainfall. However, some studies point to the use of climate variables and anomalies as predictors to make the forecast more accurate. This research aimed to predict the monthly rainfall, one month in advance, in four municipalities of the metropolitan region of Belo Horizonte using an ANN trained with different climate variables; additionally, it aimed to indicate the suitability of such variables as inputs to these models. The models were developed using the MATLAB® software Version R2011a using the NNTOOL toolbox. The ANNs were trained by the multilayer perceptron architecture and the feedforward and backpropagation algorithm using two combinations of input data, with two and six variables, and one combination of input data with the three most correlated variables to observed rainfall from 1970 to 1999 to predict the rainfall from 2000 to 2009. The climate variable most correlated with the rainfall of the following month was the average compensated temperature. Even when using the variables most correlated with precipitation as predictors (0.66 ≤ nt index ≤ 1.26), there was no notable improvement in the predictive capacity of the models when compared to those that did not use climate variables as predictors (0.55 ≤ nt index ≤ 0.80).As redes neurais artificiais (RNAs) podem apresentar problemas devido a preditores insuficientes ou não informativos, o que é comum para previsões complexas, como as de precipitação pluvial. No entanto, alguns estudos apontam para o uso de variáveis e anomalias climáticas como preditores para tornar a previsão mais precisa. Esta pesquisa teve como objetivo prever a precipitação mensal, com um mês de antecedência, em quatro municípios da região metropolitana de Belo Horizonte utilizando uma RNA treinada com diferentes variáveis climáticas; além disso, buscou indicar a adequação de tais variáveis como entrada para esses modelos. Os modelos foram desenvolvidos por meio do software MATLAB® versão R2011a utilizando a toolbox NNTOOL. As RNAs foram treinadas pela arquitetura multilayer perceptron e pelo algoritmo feedforward e backpropagation usando duas combinações de dados de entrada, com duas e seis variáveis, e uma combinação de dados de entrada com as três variáveis mais correlacionadas com precipitação observada de 1970 a 1999 para prever a precipitação de 2000 a 2009. A variável climática mais correlacionada com a precipitação do mês seguinte foi a temperatura média compensada. Mesmo utilizando as variáveis mais correlacionadas com a precipitação como preditores (0,66 ≤ índice nt ≤ 1,26), não houve melhora significativa na capacidade preditiva dos modelos quando comparado aos que não utilizaram variáveis climáticas como preditores (0,55 ≤ índice nt ≤ 0,80).Instituto de Pesquisas Ambientais em Bacias Hidrográficas2023-05-16T13:32:52Z2023-05-16T13:32:52Z2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSILVA, M. A. da et al. Climate-related variables may not improve monthly scale rainfall predictions by artificial neural networks for the metropolitan region of Belo Horizonte, Brazil. Revista Ambiente Água, Taubaté, v. 18, 2023.http://repositorio.ufla.br/jspui/handle/1/56803Revista Ambiente Águareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessSilva, Mateus Alexandre daMerlo, Marina NevesThebaldi, Michael SilveiraFerreira, Danton DiegoSchwerz, FelipeDeus, Fábio Ponciano deeng2023-05-16T13:33:42Zoai:localhost:1/56803Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-16T13:33:42Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Climate-related variables may not improve monthly scale rainfall predictions by artificial neural networks for the metropolitan region of Belo Horizonte, Brazil
Variáveis relacionadas ao clima podem não melhorar previsões de precipitação pluvial em escala mensal realizadas por redes neurais artificiais para a região metropolitana de Belo Horizonte, Brasil
title Climate-related variables may not improve monthly scale rainfall predictions by artificial neural networks for the metropolitan region of Belo Horizonte, Brazil
spellingShingle Climate-related variables may not improve monthly scale rainfall predictions by artificial neural networks for the metropolitan region of Belo Horizonte, Brazil
Silva, Mateus Alexandre da
Artificial intelligence
El Nino Southern Oscillation (ENSO)
Hydrological modelling
Inteligência artificial
Modelagem hidrológica
title_short Climate-related variables may not improve monthly scale rainfall predictions by artificial neural networks for the metropolitan region of Belo Horizonte, Brazil
title_full Climate-related variables may not improve monthly scale rainfall predictions by artificial neural networks for the metropolitan region of Belo Horizonte, Brazil
title_fullStr Climate-related variables may not improve monthly scale rainfall predictions by artificial neural networks for the metropolitan region of Belo Horizonte, Brazil
title_full_unstemmed Climate-related variables may not improve monthly scale rainfall predictions by artificial neural networks for the metropolitan region of Belo Horizonte, Brazil
title_sort Climate-related variables may not improve monthly scale rainfall predictions by artificial neural networks for the metropolitan region of Belo Horizonte, Brazil
author Silva, Mateus Alexandre da
author_facet Silva, Mateus Alexandre da
Merlo, Marina Neves
Thebaldi, Michael Silveira
Ferreira, Danton Diego
Schwerz, Felipe
Deus, Fábio Ponciano de
author_role author
author2 Merlo, Marina Neves
Thebaldi, Michael Silveira
Ferreira, Danton Diego
Schwerz, Felipe
Deus, Fábio Ponciano de
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Silva, Mateus Alexandre da
Merlo, Marina Neves
Thebaldi, Michael Silveira
Ferreira, Danton Diego
Schwerz, Felipe
Deus, Fábio Ponciano de
dc.subject.por.fl_str_mv Artificial intelligence
El Nino Southern Oscillation (ENSO)
Hydrological modelling
Inteligência artificial
Modelagem hidrológica
topic Artificial intelligence
El Nino Southern Oscillation (ENSO)
Hydrological modelling
Inteligência artificial
Modelagem hidrológica
description Artificial neural networks (ANNs) may experience problems due to insufficient or uninformative predictors, and these problems are common for complex predictions such as those for rainfall. However, some studies point to the use of climate variables and anomalies as predictors to make the forecast more accurate. This research aimed to predict the monthly rainfall, one month in advance, in four municipalities of the metropolitan region of Belo Horizonte using an ANN trained with different climate variables; additionally, it aimed to indicate the suitability of such variables as inputs to these models. The models were developed using the MATLAB® software Version R2011a using the NNTOOL toolbox. The ANNs were trained by the multilayer perceptron architecture and the feedforward and backpropagation algorithm using two combinations of input data, with two and six variables, and one combination of input data with the three most correlated variables to observed rainfall from 1970 to 1999 to predict the rainfall from 2000 to 2009. The climate variable most correlated with the rainfall of the following month was the average compensated temperature. Even when using the variables most correlated with precipitation as predictors (0.66 ≤ nt index ≤ 1.26), there was no notable improvement in the predictive capacity of the models when compared to those that did not use climate variables as predictors (0.55 ≤ nt index ≤ 0.80).
publishDate 2023
dc.date.none.fl_str_mv 2023-05-16T13:32:52Z
2023-05-16T13:32:52Z
2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVA, M. A. da et al. Climate-related variables may not improve monthly scale rainfall predictions by artificial neural networks for the metropolitan region of Belo Horizonte, Brazil. Revista Ambiente Água, Taubaté, v. 18, 2023.
http://repositorio.ufla.br/jspui/handle/1/56803
identifier_str_mv SILVA, M. A. da et al. Climate-related variables may not improve monthly scale rainfall predictions by artificial neural networks for the metropolitan region of Belo Horizonte, Brazil. Revista Ambiente Água, Taubaté, v. 18, 2023.
url http://repositorio.ufla.br/jspui/handle/1/56803
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto de Pesquisas Ambientais em Bacias Hidrográficas
publisher.none.fl_str_mv Instituto de Pesquisas Ambientais em Bacias Hidrográficas
dc.source.none.fl_str_mv Revista Ambiente Água
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439155397656576