Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/41678 |
Resumo: | The objective of this manuscript is to develop a new procedure to achieve optimal land subdivision using genetic algorithms (GA). The genetic algorithm was tested in the rural settlement of Veredas, located in Minas Gerais, Brazil. This implementation was based on the land aptitude and its productivity index. The sequence of tests in the study was carried out in two areas with eight different agricultural aptitude classes, including one area of 391.88 ha subdivided into 12 lots and another of 404.1763 ha subdivided into 14 lots. The effectiveness of the method was measured using the shunting line standard value of a parceled area lot's productivity index. To evaluate each parameter, a sequence of 15 calculations was performed to record the best individual fitness average (MMI) found for each parameter variation. The best parameter combination found in testing and used to generate the new parceling with the GA was the following: 320 as the generation number, a population of 40 individuals, 0.8 mutation tax, and a 0.3 renewal tax. The solution generated rather homogeneous lots in terms of productive capacity. |
id |
UFLA_94ae5b0d43cfde2c984f0822f6b5710d |
---|---|
oai_identifier_str |
oai:localhost:1/41678 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithmsOrdenamiento territorial en proyectos de reforma agraria: un análisis utilizando algoritmos genéticosAgrarian reformGenetic algorithmRural settlementSpatial planningAlgoritmos genéticosAsentamientos ruralesOrdenamiento territorialReforma agrariaThe objective of this manuscript is to develop a new procedure to achieve optimal land subdivision using genetic algorithms (GA). The genetic algorithm was tested in the rural settlement of Veredas, located in Minas Gerais, Brazil. This implementation was based on the land aptitude and its productivity index. The sequence of tests in the study was carried out in two areas with eight different agricultural aptitude classes, including one area of 391.88 ha subdivided into 12 lots and another of 404.1763 ha subdivided into 14 lots. The effectiveness of the method was measured using the shunting line standard value of a parceled area lot's productivity index. To evaluate each parameter, a sequence of 15 calculations was performed to record the best individual fitness average (MMI) found for each parameter variation. The best parameter combination found in testing and used to generate the new parceling with the GA was the following: 320 as the generation number, a population of 40 individuals, 0.8 mutation tax, and a 0.3 renewal tax. The solution generated rather homogeneous lots in terms of productive capacity.El objetivo del presente artículo es desarrollar una nueva manera de realizar el ordenamiento territorial en proyectos de reforma agraria a través del empleo de un Algoritmo Genético (AG). El algoritmo genético fue testado en el Proyecto de Asentamiento Veredas, ubicado en Minas Gerais, Brasil, e implementado con base en el sistema de aptitud agrícola de las tierras y en la atribución de índices de productividad a las mismas. La secuencia de ensayos fue realizada sobre dos áreas conteniendo ocho tipos distintos de clases de aptitud agrícola, una de 391,88 ha, y parcelada en 12 lotes, y otra con 404,1763 ha parcelada en 14 lotes. Se ha utilizado como medida de eficacia el valor de la desviación estándar de los índices de productividad de los lotes de una parcelación. Cada parámetro evaluado fue realizado con una batería de 15 repeticiones, apuntándose la media del fitness del mejor individuo (MMI) encontrada para cada variación del valor del parámetro. La mejor combinación de parámetros encontrada en los ensayos, y utilizada para generar la nueva propuesta de parcelación por el AG, fueron las siguientes: número de generaciones igual a 320, tamaño de la población de 40 individuos, tasa de mutación de 0,8 y tasa de renovación de 0,3. La nueva propuesta generó lotes bastantes homogéneos, en términos de capacidad productiva.Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal2020-07-02T17:43:25Z2020-07-02T17:43:25Z2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfFERREIRA NETO, J. A. et al. Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms. Ciencia e investigación agraria, Santiago, v. 38, n. 2, p. 169-178, 2011.http://repositorio.ufla.br/jspui/handle/1/41678Ciencia e investigación agrariareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessFerreira Neto, José AmbrósioSantos Junior, Edgard Carneiro dosPaleo, Urbano FraBarros, David MirandaMoreira, Mayron César de Oliveiraeng2023-05-03T13:17:42Zoai:localhost:1/41678Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-03T13:17:42Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms Ordenamiento territorial en proyectos de reforma agraria: un análisis utilizando algoritmos genéticos |
title |
Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms |
spellingShingle |
Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms Ferreira Neto, José Ambrósio Agrarian reform Genetic algorithm Rural settlement Spatial planning Algoritmos genéticos Asentamientos rurales Ordenamiento territorial Reforma agraria |
title_short |
Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms |
title_full |
Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms |
title_fullStr |
Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms |
title_full_unstemmed |
Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms |
title_sort |
Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms |
author |
Ferreira Neto, José Ambrósio |
author_facet |
Ferreira Neto, José Ambrósio Santos Junior, Edgard Carneiro dos Paleo, Urbano Fra Barros, David Miranda Moreira, Mayron César de Oliveira |
author_role |
author |
author2 |
Santos Junior, Edgard Carneiro dos Paleo, Urbano Fra Barros, David Miranda Moreira, Mayron César de Oliveira |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Ferreira Neto, José Ambrósio Santos Junior, Edgard Carneiro dos Paleo, Urbano Fra Barros, David Miranda Moreira, Mayron César de Oliveira |
dc.subject.por.fl_str_mv |
Agrarian reform Genetic algorithm Rural settlement Spatial planning Algoritmos genéticos Asentamientos rurales Ordenamiento territorial Reforma agraria |
topic |
Agrarian reform Genetic algorithm Rural settlement Spatial planning Algoritmos genéticos Asentamientos rurales Ordenamiento territorial Reforma agraria |
description |
The objective of this manuscript is to develop a new procedure to achieve optimal land subdivision using genetic algorithms (GA). The genetic algorithm was tested in the rural settlement of Veredas, located in Minas Gerais, Brazil. This implementation was based on the land aptitude and its productivity index. The sequence of tests in the study was carried out in two areas with eight different agricultural aptitude classes, including one area of 391.88 ha subdivided into 12 lots and another of 404.1763 ha subdivided into 14 lots. The effectiveness of the method was measured using the shunting line standard value of a parceled area lot's productivity index. To evaluate each parameter, a sequence of 15 calculations was performed to record the best individual fitness average (MMI) found for each parameter variation. The best parameter combination found in testing and used to generate the new parceling with the GA was the following: 320 as the generation number, a population of 40 individuals, 0.8 mutation tax, and a 0.3 renewal tax. The solution generated rather homogeneous lots in terms of productive capacity. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 2020-07-02T17:43:25Z 2020-07-02T17:43:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FERREIRA NETO, J. A. et al. Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms. Ciencia e investigación agraria, Santiago, v. 38, n. 2, p. 169-178, 2011. http://repositorio.ufla.br/jspui/handle/1/41678 |
identifier_str_mv |
FERREIRA NETO, J. A. et al. Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms. Ciencia e investigación agraria, Santiago, v. 38, n. 2, p. 169-178, 2011. |
url |
http://repositorio.ufla.br/jspui/handle/1/41678 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial 4.0 International http://creativecommons.org/licenses/by-nc/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International http://creativecommons.org/licenses/by-nc/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal |
publisher.none.fl_str_mv |
Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal |
dc.source.none.fl_str_mv |
Ciencia e investigación agraria reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439369296674816 |