Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms

Detalhes bibliográficos
Autor(a) principal: Ferreira Neto, José Ambrósio
Data de Publicação: 2011
Outros Autores: Santos Junior, Edgard Carneiro dos, Paleo, Urbano Fra, Barros, David Miranda, Moreira, Mayron César de Oliveira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/41678
Resumo: The objective of this manuscript is to develop a new procedure to achieve optimal land subdivision using genetic algorithms (GA). The genetic algorithm was tested in the rural settlement of Veredas, located in Minas Gerais, Brazil. This implementation was based on the land aptitude and its productivity index. The sequence of tests in the study was carried out in two areas with eight different agricultural aptitude classes, including one area of 391.88 ha subdivided into 12 lots and another of 404.1763 ha subdivided into 14 lots. The effectiveness of the method was measured using the shunting line standard value of a parceled area lot's productivity index. To evaluate each parameter, a sequence of 15 calculations was performed to record the best individual fitness average (MMI) found for each parameter variation. The best parameter combination found in testing and used to generate the new parceling with the GA was the following: 320 as the generation number, a population of 40 individuals, 0.8 mutation tax, and a 0.3 renewal tax. The solution generated rather homogeneous lots in terms of productive capacity.
id UFLA_94ae5b0d43cfde2c984f0822f6b5710d
oai_identifier_str oai:localhost:1/41678
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithmsOrdenamiento territorial en proyectos de reforma agraria: un análisis utilizando algoritmos genéticosAgrarian reformGenetic algorithmRural settlementSpatial planningAlgoritmos genéticosAsentamientos ruralesOrdenamiento territorialReforma agrariaThe objective of this manuscript is to develop a new procedure to achieve optimal land subdivision using genetic algorithms (GA). The genetic algorithm was tested in the rural settlement of Veredas, located in Minas Gerais, Brazil. This implementation was based on the land aptitude and its productivity index. The sequence of tests in the study was carried out in two areas with eight different agricultural aptitude classes, including one area of 391.88 ha subdivided into 12 lots and another of 404.1763 ha subdivided into 14 lots. The effectiveness of the method was measured using the shunting line standard value of a parceled area lot's productivity index. To evaluate each parameter, a sequence of 15 calculations was performed to record the best individual fitness average (MMI) found for each parameter variation. The best parameter combination found in testing and used to generate the new parceling with the GA was the following: 320 as the generation number, a population of 40 individuals, 0.8 mutation tax, and a 0.3 renewal tax. The solution generated rather homogeneous lots in terms of productive capacity.El objetivo del presente artículo es desarrollar una nueva manera de realizar el ordenamiento territorial en proyectos de reforma agraria a través del empleo de un Algoritmo Genético (AG). El algoritmo genético fue testado en el Proyecto de Asentamiento Veredas, ubicado en Minas Gerais, Brasil, e implementado con base en el sistema de aptitud agrícola de las tierras y en la atribución de índices de productividad a las mismas. La secuencia de ensayos fue realizada sobre dos áreas conteniendo ocho tipos distintos de clases de aptitud agrícola, una de 391,88 ha, y parcelada en 12 lotes, y otra con 404,1763 ha parcelada en 14 lotes. Se ha utilizado como medida de eficacia el valor de la desviación estándar de los índices de productividad de los lotes de una parcelación. Cada parámetro evaluado fue realizado con una batería de 15 repeticiones, apuntándose la media del fitness del mejor individuo (MMI) encontrada para cada variación del valor del parámetro. La mejor combinación de parámetros encontrada en los ensayos, y utilizada para generar la nueva propuesta de parcelación por el AG, fueron las siguientes: número de generaciones igual a 320, tamaño de la población de 40 individuos, tasa de mutación de 0,8 y tasa de renovación de 0,3. La nueva propuesta generó lotes bastantes homogéneos, en términos de capacidad productiva.Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal2020-07-02T17:43:25Z2020-07-02T17:43:25Z2011info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfFERREIRA NETO, J. A. et al. Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms. Ciencia e investigación agraria, Santiago, v. 38, n. 2, p. 169-178, 2011.http://repositorio.ufla.br/jspui/handle/1/41678Ciencia e investigación agrariareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessFerreira Neto, José AmbrósioSantos Junior, Edgard Carneiro dosPaleo, Urbano FraBarros, David MirandaMoreira, Mayron César de Oliveiraeng2023-05-03T13:17:42Zoai:localhost:1/41678Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-03T13:17:42Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms
Ordenamiento territorial en proyectos de reforma agraria: un análisis utilizando algoritmos genéticos
title Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms
spellingShingle Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms
Ferreira Neto, José Ambrósio
Agrarian reform
Genetic algorithm
Rural settlement
Spatial planning
Algoritmos genéticos
Asentamientos rurales
Ordenamiento territorial
Reforma agraria
title_short Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms
title_full Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms
title_fullStr Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms
title_full_unstemmed Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms
title_sort Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms
author Ferreira Neto, José Ambrósio
author_facet Ferreira Neto, José Ambrósio
Santos Junior, Edgard Carneiro dos
Paleo, Urbano Fra
Barros, David Miranda
Moreira, Mayron César de Oliveira
author_role author
author2 Santos Junior, Edgard Carneiro dos
Paleo, Urbano Fra
Barros, David Miranda
Moreira, Mayron César de Oliveira
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Ferreira Neto, José Ambrósio
Santos Junior, Edgard Carneiro dos
Paleo, Urbano Fra
Barros, David Miranda
Moreira, Mayron César de Oliveira
dc.subject.por.fl_str_mv Agrarian reform
Genetic algorithm
Rural settlement
Spatial planning
Algoritmos genéticos
Asentamientos rurales
Ordenamiento territorial
Reforma agraria
topic Agrarian reform
Genetic algorithm
Rural settlement
Spatial planning
Algoritmos genéticos
Asentamientos rurales
Ordenamiento territorial
Reforma agraria
description The objective of this manuscript is to develop a new procedure to achieve optimal land subdivision using genetic algorithms (GA). The genetic algorithm was tested in the rural settlement of Veredas, located in Minas Gerais, Brazil. This implementation was based on the land aptitude and its productivity index. The sequence of tests in the study was carried out in two areas with eight different agricultural aptitude classes, including one area of 391.88 ha subdivided into 12 lots and another of 404.1763 ha subdivided into 14 lots. The effectiveness of the method was measured using the shunting line standard value of a parceled area lot's productivity index. To evaluate each parameter, a sequence of 15 calculations was performed to record the best individual fitness average (MMI) found for each parameter variation. The best parameter combination found in testing and used to generate the new parceling with the GA was the following: 320 as the generation number, a population of 40 individuals, 0.8 mutation tax, and a 0.3 renewal tax. The solution generated rather homogeneous lots in terms of productive capacity.
publishDate 2011
dc.date.none.fl_str_mv 2011
2020-07-02T17:43:25Z
2020-07-02T17:43:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv FERREIRA NETO, J. A. et al. Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms. Ciencia e investigación agraria, Santiago, v. 38, n. 2, p. 169-178, 2011.
http://repositorio.ufla.br/jspui/handle/1/41678
identifier_str_mv FERREIRA NETO, J. A. et al. Optimal subdivision of land in agrarian reform projects: an analysis using genetic algorithms. Ciencia e investigación agraria, Santiago, v. 38, n. 2, p. 169-178, 2011.
url http://repositorio.ufla.br/jspui/handle/1/41678
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial 4.0 International
http://creativecommons.org/licenses/by-nc/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial 4.0 International
http://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal
publisher.none.fl_str_mv Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal
dc.source.none.fl_str_mv Ciencia e investigación agraria
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439369296674816