A bayesian shrinkage approach for AMMI models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/12261 |
Resumo: | Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior distribution retaining more GEI pattern in the first components and discarding noise without Gaussian assumption as requested in F-based tests or deal with parametric problems as observed in traditional AMMI shrinkage method. |
id |
UFLA_9ad7faf639172e67ea8bc71098f3c69c |
---|---|
oai_identifier_str |
oai:localhost:1/12261 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
A bayesian shrinkage approach for AMMI modelsBayesian shrinkageAMMI modelLinear-bilinear modelsPlant breeding programsLinear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior distribution retaining more GEI pattern in the first components and discarding noise without Gaussian assumption as requested in F-based tests or deal with parametric problems as observed in traditional AMMI shrinkage method.Public Library of Science2017-02-07T17:32:37Z2017-02-07T17:32:37Z2015-07-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSILVA, C. P da et al. A bayesian shrinkage approach for AMMI models. Plos One, San Francisco, v. 10, n. 7, p. 1-27, July 2015.http://repositorio.ufla.br/jspui/handle/1/12261Plos Onereponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLASilva, Carlos Pereira daOliveira, Luciano Antonio deNuvunga, Joel JorgePamplona, Andrezza Kéllen AlvesBalestre, Marcioinfo:eu-repo/semantics/openAccesseng2023-05-26T19:37:33Zoai:localhost:1/12261Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-26T19:37:33Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
A bayesian shrinkage approach for AMMI models |
title |
A bayesian shrinkage approach for AMMI models |
spellingShingle |
A bayesian shrinkage approach for AMMI models Silva, Carlos Pereira da Bayesian shrinkage AMMI model Linear-bilinear models Plant breeding programs |
title_short |
A bayesian shrinkage approach for AMMI models |
title_full |
A bayesian shrinkage approach for AMMI models |
title_fullStr |
A bayesian shrinkage approach for AMMI models |
title_full_unstemmed |
A bayesian shrinkage approach for AMMI models |
title_sort |
A bayesian shrinkage approach for AMMI models |
author |
Silva, Carlos Pereira da |
author_facet |
Silva, Carlos Pereira da Oliveira, Luciano Antonio de Nuvunga, Joel Jorge Pamplona, Andrezza Kéllen Alves Balestre, Marcio |
author_role |
author |
author2 |
Oliveira, Luciano Antonio de Nuvunga, Joel Jorge Pamplona, Andrezza Kéllen Alves Balestre, Marcio |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Silva, Carlos Pereira da Oliveira, Luciano Antonio de Nuvunga, Joel Jorge Pamplona, Andrezza Kéllen Alves Balestre, Marcio |
dc.subject.por.fl_str_mv |
Bayesian shrinkage AMMI model Linear-bilinear models Plant breeding programs |
topic |
Bayesian shrinkage AMMI model Linear-bilinear models Plant breeding programs |
description |
Linear-bilinear models, especially the additive main effects and multiplicative interaction (AMMI) model, are widely applicable to genotype-by-environment interaction (GEI) studies in plant breeding programs. These models allow a parsimonious modeling of GE interactions, retaining a small number of principal components in the analysis. However, one aspect of the AMMI model that is still debated is the selection criteria for determining the number of multiplicative terms required to describe the GE interaction pattern. Shrinkage estimators have been proposed as selection criteria for the GE interaction components. In this study, a Bayesian approach was combined with the AMMI model with shrinkage estimators for the principal components. A total of 55 maize genotypes were evaluated in nine different environments using a complete blocks design with three replicates. The results show that the traditional Bayesian AMMI model produces low shrinkage of singular values but avoids the usual pitfalls in determining the credible intervals in the biplot. On the other hand, Bayesian shrinkage AMMI models have difficulty with the credible interval for model parameters, but produce stronger shrinkage of the principal components, converging to GE matrices that have more shrinkage than those obtained using mixed models. This characteristic allowed more parsimonious models to be chosen, and resulted in models being selected that were similar to those obtained by the Cornelius F-test (α = 0.05) in traditional AMMI models and cross validation based on leave-one-out. This characteristic allowed more parsimonious models to be chosen and more GEI pattern retained on the first two components. The resulting model chosen by posterior distribution of singular value was also similar to those produced by the cross-validation approach in traditional AMMI models. Our method enables the estimation of credible interval for AMMI biplot plus the choice of AMMI model based on direct posterior distribution retaining more GEI pattern in the first components and discarding noise without Gaussian assumption as requested in F-based tests or deal with parametric problems as observed in traditional AMMI shrinkage method. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07-09 2017-02-07T17:32:37Z 2017-02-07T17:32:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SILVA, C. P da et al. A bayesian shrinkage approach for AMMI models. Plos One, San Francisco, v. 10, n. 7, p. 1-27, July 2015. http://repositorio.ufla.br/jspui/handle/1/12261 |
identifier_str_mv |
SILVA, C. P da et al. A bayesian shrinkage approach for AMMI models. Plos One, San Francisco, v. 10, n. 7, p. 1-27, July 2015. |
url |
http://repositorio.ufla.br/jspui/handle/1/12261 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
Plos One reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439302637649920 |