Dipolar repulsion in α-halocarbonyl compounds revisited

Detalhes bibliográficos
Autor(a) principal: Silva, Daniela Rodrigues
Data de Publicação: 2021
Outros Autores: Santos, Lucas de Azevedo, Hamlin, Trevor A., Bickelhaupt, F. Matthias, Freitas, Matheus P., Guerra, Célia Fonseca
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/48796
Resumo: The concept of dipolar repulsion has been widely used to explain several phenomena in organic chemistry, including the conformational preferences of carbonyl compounds. This model, in which atoms and bonds are viewed as point charges and dipole moment vectors, respectively, is however oversimplified. To provide a causal model rooted in quantitative molecular orbital theory, we have analyzed the rotational isomerism of haloacetaldehydes OHC–CH2X (X = F, Cl, Br, I), using relativistic density functional theory. We have found that the overall trend in the rotational energy profiles is set by the combined effects of Pauli repulsion (introducing a barrier around gauche that separates minima at syn and anti), orbital interactions (which can pull the anti minimum towards anticlinal to maximize hyperconjugation), and electrostatic interactions. Only for X = F, not for X = Cl–I, electrostatic interactions push the preference from syn to anti. Our bonding analyses show how this trend is related to the compact nature of F versus the more diffuse nature of the heavier halogens.
id UFLA_a012466f4c92420cc39e5cf79e0793f3
oai_identifier_str oai:localhost:1/48796
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Dipolar repulsion in α-halocarbonyl compounds revisitedRotational energy profilesOrbital interactionsElectrostatic interactionsThe concept of dipolar repulsion has been widely used to explain several phenomena in organic chemistry, including the conformational preferences of carbonyl compounds. This model, in which atoms and bonds are viewed as point charges and dipole moment vectors, respectively, is however oversimplified. To provide a causal model rooted in quantitative molecular orbital theory, we have analyzed the rotational isomerism of haloacetaldehydes OHC–CH2X (X = F, Cl, Br, I), using relativistic density functional theory. We have found that the overall trend in the rotational energy profiles is set by the combined effects of Pauli repulsion (introducing a barrier around gauche that separates minima at syn and anti), orbital interactions (which can pull the anti minimum towards anticlinal to maximize hyperconjugation), and electrostatic interactions. Only for X = F, not for X = Cl–I, electrostatic interactions push the preference from syn to anti. Our bonding analyses show how this trend is related to the compact nature of F versus the more diffuse nature of the heavier halogens.Royal Society of Chemistry2022-01-06T15:46:08Z2022-01-06T15:46:08Z2021-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfSILVA, D. R. et al. Dipolar repulsion in α-halocarbonyl compounds revisited. Physical Chemistry Chemical Physics, [S.l.], v. 23, p. 20883-20891, Sept. 2021. DOI: 10.1039/d1cp02502c.http://repositorio.ufla.br/jspui/handle/1/48796Physical Chemistry Chemical Physicsreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessSilva, Daniela RodriguesSantos, Lucas de AzevedoHamlin, Trevor A.Bickelhaupt, F. MatthiasFreitas, Matheus P.Guerra, Célia Fonsecaeng2023-05-29T11:07:11Zoai:localhost:1/48796Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-29T11:07:11Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Dipolar repulsion in α-halocarbonyl compounds revisited
title Dipolar repulsion in α-halocarbonyl compounds revisited
spellingShingle Dipolar repulsion in α-halocarbonyl compounds revisited
Silva, Daniela Rodrigues
Rotational energy profiles
Orbital interactions
Electrostatic interactions
title_short Dipolar repulsion in α-halocarbonyl compounds revisited
title_full Dipolar repulsion in α-halocarbonyl compounds revisited
title_fullStr Dipolar repulsion in α-halocarbonyl compounds revisited
title_full_unstemmed Dipolar repulsion in α-halocarbonyl compounds revisited
title_sort Dipolar repulsion in α-halocarbonyl compounds revisited
author Silva, Daniela Rodrigues
author_facet Silva, Daniela Rodrigues
Santos, Lucas de Azevedo
Hamlin, Trevor A.
Bickelhaupt, F. Matthias
Freitas, Matheus P.
Guerra, Célia Fonseca
author_role author
author2 Santos, Lucas de Azevedo
Hamlin, Trevor A.
Bickelhaupt, F. Matthias
Freitas, Matheus P.
Guerra, Célia Fonseca
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Silva, Daniela Rodrigues
Santos, Lucas de Azevedo
Hamlin, Trevor A.
Bickelhaupt, F. Matthias
Freitas, Matheus P.
Guerra, Célia Fonseca
dc.subject.por.fl_str_mv Rotational energy profiles
Orbital interactions
Electrostatic interactions
topic Rotational energy profiles
Orbital interactions
Electrostatic interactions
description The concept of dipolar repulsion has been widely used to explain several phenomena in organic chemistry, including the conformational preferences of carbonyl compounds. This model, in which atoms and bonds are viewed as point charges and dipole moment vectors, respectively, is however oversimplified. To provide a causal model rooted in quantitative molecular orbital theory, we have analyzed the rotational isomerism of haloacetaldehydes OHC–CH2X (X = F, Cl, Br, I), using relativistic density functional theory. We have found that the overall trend in the rotational energy profiles is set by the combined effects of Pauli repulsion (introducing a barrier around gauche that separates minima at syn and anti), orbital interactions (which can pull the anti minimum towards anticlinal to maximize hyperconjugation), and electrostatic interactions. Only for X = F, not for X = Cl–I, electrostatic interactions push the preference from syn to anti. Our bonding analyses show how this trend is related to the compact nature of F versus the more diffuse nature of the heavier halogens.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-01
2022-01-06T15:46:08Z
2022-01-06T15:46:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVA, D. R. et al. Dipolar repulsion in α-halocarbonyl compounds revisited. Physical Chemistry Chemical Physics, [S.l.], v. 23, p. 20883-20891, Sept. 2021. DOI: 10.1039/d1cp02502c.
http://repositorio.ufla.br/jspui/handle/1/48796
identifier_str_mv SILVA, D. R. et al. Dipolar repulsion in α-halocarbonyl compounds revisited. Physical Chemistry Chemical Physics, [S.l.], v. 23, p. 20883-20891, Sept. 2021. DOI: 10.1039/d1cp02502c.
url http://repositorio.ufla.br/jspui/handle/1/48796
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv Physical Chemistry Chemical Physics
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439190256517120