Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://www.cerne.ufla.br/site/index.php/CERNE/article/view/673 http://repositorio.ufla.br/jspui/handle/1/14002 |
Resumo: | Multi-temporal images are now of standard use in remote sensing of vegetation during monitoring and classification.Temporal vegetation signatures (i. e., vegetation indices as functions of time) generated, poses many challenges, primarily due tosignal to noise-related issues. This study investigates which methods generate the most appropriate smoothed curves of vegetationsignatures on MODIS NDVI time series. The filtering techniques compared were the HANTS algorithm which is based on Fourieranalyses and Wavelet temporal algorithm which uses the wavelet analysis to generate the smoothed curves. The study was conductedin four different regions of the Minas Gerais State. The smoothed data were used as input data vectors for vegetation classificationby means of artificial neural networks for comparison purpose. A comparison of the results was ultimately discussed in this workshowing encouraging results and similarity between the two filtering techniques used. |
id |
UFLA_a546ed2a4d883fb0f5a1c9f5e0191d3b |
---|---|
oai_identifier_str |
oai:localhost:1/14002 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networksMapamento de florestas decícuas através de redes neurais artificiais e séries temporais de NDVI MODISRemote sensingSignal processingTime seriesWavelets analysisFourierSensoriamento remotoProcessamento de sinaisSéries temporaisAnálise waveletMulti-temporal images are now of standard use in remote sensing of vegetation during monitoring and classification.Temporal vegetation signatures (i. e., vegetation indices as functions of time) generated, poses many challenges, primarily due tosignal to noise-related issues. This study investigates which methods generate the most appropriate smoothed curves of vegetationsignatures on MODIS NDVI time series. The filtering techniques compared were the HANTS algorithm which is based on Fourieranalyses and Wavelet temporal algorithm which uses the wavelet analysis to generate the smoothed curves. The study was conductedin four different regions of the Minas Gerais State. The smoothed data were used as input data vectors for vegetation classificationby means of artificial neural networks for comparison purpose. A comparison of the results was ultimately discussed in this workshowing encouraging results and similarity between the two filtering techniques used.Imagens multitemporais são de pronominal uso no Sensoriamento Remoto, para o monitoramento e classificação davegetação. As decorrentes assinaturas temporais da vegetação possuem muitos desafios na sua utilização em razão da elevadarelação sinal/ruído. Este estudo investigou dois métodos para gerar assinaturas temporais suavizadas de vegetação do índice devegetação de diferença normalizada (NDVI), sendo estas originadas do sensor MODIS. As técnicas de filtragem utilizadas foram oalgoritmo baseado em Fourier HANTS e algoritmo Wavelet Temporal que utiliza análise Wavelet. O estudo foi conduzido em 4diferentes conjuntos de dados, correspondente a áreas separadas geograficamente no estado de Minas Gerais. Para realizar acomparação entre as séries temporais filtradas pelos diferentes algoritmos, as séries filtradas foram utilizadas como entradas dedados para classificação da vegetação em diferentes fitofisionomias. A Classificação foi feita por meio das redes neurais artificiais. Oresultado dessa classificação mostrou similaridade entre os métodos de filtragem de séries temporais NDVI comparados neste trabalho.Universidade Federal de Lavras (UFLA), Departamento de Ciências Florestais (DCF)2015-10-292017-08-01T20:13:17Z2017-08-01T20:13:17Z2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://www.cerne.ufla.br/site/index.php/CERNE/article/view/673OLIVEIRA, T. C. de A. et al. Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks. CERNE, Lavras, v. 16, n. 2, p. 123-130, abr./jun. 2010.http://repositorio.ufla.br/jspui/handle/1/14002CERNE; Vol 16 No 2 (2010); 123–1302317-63420104-7760reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttp://www.cerne.ufla.br/site/index.php/CERNE/article/view/673/561Copyright (c) 2015 CERNEinfo:eu-repo/semantics/openAccessOliveira, Thomaz Chaves de AndradeCarvalho, Luis Marcelo Tavares deOliveira, Luciano Teixeira deMartinhago, Adriana ZanellaAcerbi Júnior, Fausto WeimarLima, Mariana Peres de2020-09-20T23:13:03Zoai:localhost:1/14002Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2020-09-20T23:13:03Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks Mapamento de florestas decícuas através de redes neurais artificiais e séries temporais de NDVI MODIS |
title |
Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks |
spellingShingle |
Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks Oliveira, Thomaz Chaves de Andrade Remote sensing Signal processing Time series Wavelets analysis Fourier Sensoriamento remoto Processamento de sinais Séries temporais Análise wavelet |
title_short |
Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks |
title_full |
Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks |
title_fullStr |
Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks |
title_full_unstemmed |
Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks |
title_sort |
Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks |
author |
Oliveira, Thomaz Chaves de Andrade |
author_facet |
Oliveira, Thomaz Chaves de Andrade Carvalho, Luis Marcelo Tavares de Oliveira, Luciano Teixeira de Martinhago, Adriana Zanella Acerbi Júnior, Fausto Weimar Lima, Mariana Peres de |
author_role |
author |
author2 |
Carvalho, Luis Marcelo Tavares de Oliveira, Luciano Teixeira de Martinhago, Adriana Zanella Acerbi Júnior, Fausto Weimar Lima, Mariana Peres de |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Oliveira, Thomaz Chaves de Andrade Carvalho, Luis Marcelo Tavares de Oliveira, Luciano Teixeira de Martinhago, Adriana Zanella Acerbi Júnior, Fausto Weimar Lima, Mariana Peres de |
dc.subject.por.fl_str_mv |
Remote sensing Signal processing Time series Wavelets analysis Fourier Sensoriamento remoto Processamento de sinais Séries temporais Análise wavelet |
topic |
Remote sensing Signal processing Time series Wavelets analysis Fourier Sensoriamento remoto Processamento de sinais Séries temporais Análise wavelet |
description |
Multi-temporal images are now of standard use in remote sensing of vegetation during monitoring and classification.Temporal vegetation signatures (i. e., vegetation indices as functions of time) generated, poses many challenges, primarily due tosignal to noise-related issues. This study investigates which methods generate the most appropriate smoothed curves of vegetationsignatures on MODIS NDVI time series. The filtering techniques compared were the HANTS algorithm which is based on Fourieranalyses and Wavelet temporal algorithm which uses the wavelet analysis to generate the smoothed curves. The study was conductedin four different regions of the Minas Gerais State. The smoothed data were used as input data vectors for vegetation classificationby means of artificial neural networks for comparison purpose. A comparison of the results was ultimately discussed in this workshowing encouraging results and similarity between the two filtering techniques used. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10-29 2017-08-01T20:13:17Z 2017-08-01T20:13:17Z 2017-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.cerne.ufla.br/site/index.php/CERNE/article/view/673 OLIVEIRA, T. C. de A. et al. Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks. CERNE, Lavras, v. 16, n. 2, p. 123-130, abr./jun. 2010. http://repositorio.ufla.br/jspui/handle/1/14002 |
url |
http://www.cerne.ufla.br/site/index.php/CERNE/article/view/673 http://repositorio.ufla.br/jspui/handle/1/14002 |
identifier_str_mv |
OLIVEIRA, T. C. de A. et al. Mapping deciduous forests by using time series of filtered MODIS NDVI and neural networks. CERNE, Lavras, v. 16, n. 2, p. 123-130, abr./jun. 2010. |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.cerne.ufla.br/site/index.php/CERNE/article/view/673/561 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2015 CERNE info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2015 CERNE |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras (UFLA), Departamento de Ciências Florestais (DCF) |
publisher.none.fl_str_mv |
Universidade Federal de Lavras (UFLA), Departamento de Ciências Florestais (DCF) |
dc.source.none.fl_str_mv |
CERNE; Vol 16 No 2 (2010); 123–130 2317-6342 0104-7760 reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815438969420120064 |