Individual-Based Model (IBM): An alternative framework for epidemiological compartment models

Detalhes bibliográficos
Autor(a) principal: Nepomuceno, Erivelton Geraldo
Data de Publicação: 2016
Outros Autores: Takahashi, Ricardo Hiroshi Caldeira, Aguirre, Luis Antonio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/13945
Resumo: A traditional approach to model infectious diseases is to use compartment models based on dierential equations, such as the SIR (Susceptible-Infected-Recovered) model. These models explain average behavior, but are inadequate to account for stochastic fluctuations of epidemiological variables. An alternative approach is to use Individual-Based Model (IBM), that represent each individual as a set of features that change dynamically over time. This allows modeling population phenomena as aggregates of individual interactions. This paper presents a general framework to model epidemiological systems using IBM as an alternative to replace or complement epidemiological compartment models. The proposed modeling approach is shown to allow the study of some phenomena which are related to nite-population demographic stochastic fluctuation. In particular, a procedure for the computation of the probability of disease eradication within a time horizon in the case of systems which have mean-field endemic equilibrium is presented as a direct application of the proposed approach. It is shown, how this general framework may be described as an algorithm suitable to model dierent types of compartment  models. Numerical simulations illustrate how this approach may provide greater insight about a great variety of epidemiological systems.
id UFLA_a84458041e9b4568f2648aaa61071125
oai_identifier_str oai:localhost:1/13945
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Individual-Based Model (IBM): An alternative framework for epidemiological compartment modelsIndividual-Based modelMathematical epidemiologyStochastic fluctuationsEpidemiological compartment modelsModelo baseado em indivíduosEpidemiologia matemáticaFlutuações estocásticasModelo epidemiológico compartimentalA traditional approach to model infectious diseases is to use compartment models based on dierential equations, such as the SIR (Susceptible-Infected-Recovered) model. These models explain average behavior, but are inadequate to account for stochastic fluctuations of epidemiological variables. An alternative approach is to use Individual-Based Model (IBM), that represent each individual as a set of features that change dynamically over time. This allows modeling population phenomena as aggregates of individual interactions. This paper presents a general framework to model epidemiological systems using IBM as an alternative to replace or complement epidemiological compartment models. The proposed modeling approach is shown to allow the study of some phenomena which are related to nite-population demographic stochastic fluctuation. In particular, a procedure for the computation of the probability of disease eradication within a time horizon in the case of systems which have mean-field endemic equilibrium is presented as a direct application of the proposed approach. It is shown, how this general framework may be described as an algorithm suitable to model dierent types of compartment  models. Numerical simulations illustrate how this approach may provide greater insight about a great variety of epidemiological systems.Universidade Federal de Lavras2016-03-302017-08-01T20:09:49Z2017-08-01T20:09:49Z2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfapplication/pdfNEPOMUCENO, E. G.; TAKAHASHI, R. H. C.; AGUIRRE, L. A. Individual-Based Model (IBM): An alternative framework for epidemiological compartment models. Revista Brasileira de Biometria, Lavras, v. 34, n. 1, p. 133-162, mar. 2016.http://repositorio.ufla.br/jspui/handle/1/13945REVISTA BRASILEIRA DE BIOMETRIA; Vol 34 No 1 (2016); 133-1621983-0823reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttp://www.biometria.ufla.br/index.php/BBJ/article/view/95/34Copyright (c) 2016 Erivelton Geraldo NEPOMUCENO, Ricardo Hiroshi Caldeira TAKAHASHI, Luis Antonio AGUIRREAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessNepomuceno, Erivelton GeraldoTakahashi, Ricardo Hiroshi CaldeiraAguirre, Luis AntonioNepomuceno, Erivelton GeraldoTakahashi, Ricardo Hiroshi CaldeiraAguirre, Luis Antonio2021-04-26T12:54:18Zoai:localhost:1/13945Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-04-26T12:54:18Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Individual-Based Model (IBM): An alternative framework for epidemiological compartment models
title Individual-Based Model (IBM): An alternative framework for epidemiological compartment models
spellingShingle Individual-Based Model (IBM): An alternative framework for epidemiological compartment models
Nepomuceno, Erivelton Geraldo
Individual-Based model
Mathematical epidemiology
Stochastic fluctuations
Epidemiological compartment models
Modelo baseado em indivíduos
Epidemiologia matemática
Flutuações estocásticas
Modelo epidemiológico compartimental
title_short Individual-Based Model (IBM): An alternative framework for epidemiological compartment models
title_full Individual-Based Model (IBM): An alternative framework for epidemiological compartment models
title_fullStr Individual-Based Model (IBM): An alternative framework for epidemiological compartment models
title_full_unstemmed Individual-Based Model (IBM): An alternative framework for epidemiological compartment models
title_sort Individual-Based Model (IBM): An alternative framework for epidemiological compartment models
author Nepomuceno, Erivelton Geraldo
author_facet Nepomuceno, Erivelton Geraldo
Takahashi, Ricardo Hiroshi Caldeira
Aguirre, Luis Antonio
author_role author
author2 Takahashi, Ricardo Hiroshi Caldeira
Aguirre, Luis Antonio
author2_role author
author
dc.contributor.author.fl_str_mv Nepomuceno, Erivelton Geraldo
Takahashi, Ricardo Hiroshi Caldeira
Aguirre, Luis Antonio
Nepomuceno, Erivelton Geraldo
Takahashi, Ricardo Hiroshi Caldeira
Aguirre, Luis Antonio
dc.subject.por.fl_str_mv Individual-Based model
Mathematical epidemiology
Stochastic fluctuations
Epidemiological compartment models
Modelo baseado em indivíduos
Epidemiologia matemática
Flutuações estocásticas
Modelo epidemiológico compartimental
topic Individual-Based model
Mathematical epidemiology
Stochastic fluctuations
Epidemiological compartment models
Modelo baseado em indivíduos
Epidemiologia matemática
Flutuações estocásticas
Modelo epidemiológico compartimental
description A traditional approach to model infectious diseases is to use compartment models based on dierential equations, such as the SIR (Susceptible-Infected-Recovered) model. These models explain average behavior, but are inadequate to account for stochastic fluctuations of epidemiological variables. An alternative approach is to use Individual-Based Model (IBM), that represent each individual as a set of features that change dynamically over time. This allows modeling population phenomena as aggregates of individual interactions. This paper presents a general framework to model epidemiological systems using IBM as an alternative to replace or complement epidemiological compartment models. The proposed modeling approach is shown to allow the study of some phenomena which are related to nite-population demographic stochastic fluctuation. In particular, a procedure for the computation of the probability of disease eradication within a time horizon in the case of systems which have mean-field endemic equilibrium is presented as a direct application of the proposed approach. It is shown, how this general framework may be described as an algorithm suitable to model dierent types of compartment  models. Numerical simulations illustrate how this approach may provide greater insight about a great variety of epidemiological systems.
publishDate 2016
dc.date.none.fl_str_mv 2016-03-30
2017-08-01T20:09:49Z
2017-08-01T20:09:49Z
2017-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv NEPOMUCENO, E. G.; TAKAHASHI, R. H. C.; AGUIRRE, L. A. Individual-Based Model (IBM): An alternative framework for epidemiological compartment models. Revista Brasileira de Biometria, Lavras, v. 34, n. 1, p. 133-162, mar. 2016.
http://repositorio.ufla.br/jspui/handle/1/13945
identifier_str_mv NEPOMUCENO, E. G.; TAKAHASHI, R. H. C.; AGUIRRE, L. A. Individual-Based Model (IBM): An alternative framework for epidemiological compartment models. Revista Brasileira de Biometria, Lavras, v. 34, n. 1, p. 133-162, mar. 2016.
url http://repositorio.ufla.br/jspui/handle/1/13945
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.biometria.ufla.br/index.php/BBJ/article/view/95/34
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
publisher.none.fl_str_mv Universidade Federal de Lavras
dc.source.none.fl_str_mv REVISTA BRASILEIRA DE BIOMETRIA; Vol 34 No 1 (2016); 133-162
1983-0823
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439146634706944