Vehicle claims in the south of Minas Gerais: an approach using classification models

Detalhes bibliográficos
Autor(a) principal: Pala, Luiz Otávio de Oliveira
Data de Publicação: 2020
Outros Autores: Carvalho, Marcela de Marillac, Guimarães, Paulo Henrique Sales, Sáfadi, Thelma
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/43330
Resumo: With the changes in the patterns of risk, new insurance products are available on the market. Consequently, pricing models are restructured to manage levels of risk and create premiums that maintain the well-being of insurers. This work analyzed the Logistics and Random forests models in the classification of total loss events in the south of Minas Gerais using original and artificial samples, built by the ROSE resampling method, which is a procedure for constructing artificial samples in a smoothing bootstrap. A total loss of a vehicle is considered when the repair costs for the same event exceed a percentage established by contract. As a result, it was obtained that the models with artificial data improved the balanced accuracy rate on unbalanced data.
id UFLA_a88b6d07ddd02a99113d1dc584fcafb1
oai_identifier_str oai:localhost:1/43330
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Vehicle claims in the south of Minas Gerais: an approach using classification modelsOcorrência de sinistros em veículos no sul de Minas Gerais: uma abordagem via modelos de classificaçãoRandom forestRandom over sampling examplesLogistic regressionFloresta aleatóriaAmostra aleatóriaRegressão logísticaWith the changes in the patterns of risk, new insurance products are available on the market. Consequently, pricing models are restructured to manage levels of risk and create premiums that maintain the well-being of insurers. This work analyzed the Logistics and Random forests models in the classification of total loss events in the south of Minas Gerais using original and artificial samples, built by the ROSE resampling method, which is a procedure for constructing artificial samples in a smoothing bootstrap. A total loss of a vehicle is considered when the repair costs for the same event exceed a percentage established by contract. As a result, it was obtained that the models with artificial data improved the balanced accuracy rate on unbalanced data.Com as mudanças nos padrões de risco, novos produtos de seguros são disponibilizados no mercado, atendendo as demandas do consumidor. Consequentemente, os modelos de precificação são reestruturados de modo a gerenciar os níveis de risco e estabelecer prêmios que mantenham o bem estar atuarial, alocando apólices em carteiras através de modelos de classificação e clusterização. Este trabalho analisou o desempenho dos modelos Logísticos e Random forests na classificação de ocorrências de sinistros do tipo colisão por perda total no sul de Minas Gerais utilizando amostras de treino originais e artificiais via método de reamostragem ROSE, que é um procedimento de construção de amostras artificiais em uma suavização bootstrap. Considerase a perda total de um veículo quando os custos de reparos do sinistro de um mesmo evento superarem um percentual estabelecido contratualmente. Como resultado, obteve-se que os modelos com amostra artificial apresentaram resultados de acurácia balanceada superiores aos demais, indicando a melhoria através de métodos de reamostragem durante o treino.Universidade Estadual de Londrina2020-10-06T20:59:33Z2020-10-06T20:59:33Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfPALA, L. O. de O. et al. Vehicle claims in the south of Minas Gerais: an approach using classification models. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 41, n. 1, p. 79-86, Jan./June 2020. DOI: http://dx.doi.org/10.5433/1679-0375.2020v41n1p79.http://repositorio.ufla.br/jspui/handle/1/43330Semina: Ciências Exatas e Tecnológicasreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessPala, Luiz Otávio de OliveiraCarvalho, Marcela de MarillacGuimarães, Paulo Henrique SalesSáfadi, Thelmaeng2023-05-26T19:36:02Zoai:localhost:1/43330Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-26T19:36:02Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Vehicle claims in the south of Minas Gerais: an approach using classification models
Ocorrência de sinistros em veículos no sul de Minas Gerais: uma abordagem via modelos de classificação
title Vehicle claims in the south of Minas Gerais: an approach using classification models
spellingShingle Vehicle claims in the south of Minas Gerais: an approach using classification models
Pala, Luiz Otávio de Oliveira
Random forest
Random over sampling examples
Logistic regression
Floresta aleatória
Amostra aleatória
Regressão logística
title_short Vehicle claims in the south of Minas Gerais: an approach using classification models
title_full Vehicle claims in the south of Minas Gerais: an approach using classification models
title_fullStr Vehicle claims in the south of Minas Gerais: an approach using classification models
title_full_unstemmed Vehicle claims in the south of Minas Gerais: an approach using classification models
title_sort Vehicle claims in the south of Minas Gerais: an approach using classification models
author Pala, Luiz Otávio de Oliveira
author_facet Pala, Luiz Otávio de Oliveira
Carvalho, Marcela de Marillac
Guimarães, Paulo Henrique Sales
Sáfadi, Thelma
author_role author
author2 Carvalho, Marcela de Marillac
Guimarães, Paulo Henrique Sales
Sáfadi, Thelma
author2_role author
author
author
dc.contributor.author.fl_str_mv Pala, Luiz Otávio de Oliveira
Carvalho, Marcela de Marillac
Guimarães, Paulo Henrique Sales
Sáfadi, Thelma
dc.subject.por.fl_str_mv Random forest
Random over sampling examples
Logistic regression
Floresta aleatória
Amostra aleatória
Regressão logística
topic Random forest
Random over sampling examples
Logistic regression
Floresta aleatória
Amostra aleatória
Regressão logística
description With the changes in the patterns of risk, new insurance products are available on the market. Consequently, pricing models are restructured to manage levels of risk and create premiums that maintain the well-being of insurers. This work analyzed the Logistics and Random forests models in the classification of total loss events in the south of Minas Gerais using original and artificial samples, built by the ROSE resampling method, which is a procedure for constructing artificial samples in a smoothing bootstrap. A total loss of a vehicle is considered when the repair costs for the same event exceed a percentage established by contract. As a result, it was obtained that the models with artificial data improved the balanced accuracy rate on unbalanced data.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-06T20:59:33Z
2020-10-06T20:59:33Z
2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv PALA, L. O. de O. et al. Vehicle claims in the south of Minas Gerais: an approach using classification models. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 41, n. 1, p. 79-86, Jan./June 2020. DOI: http://dx.doi.org/10.5433/1679-0375.2020v41n1p79.
http://repositorio.ufla.br/jspui/handle/1/43330
identifier_str_mv PALA, L. O. de O. et al. Vehicle claims in the south of Minas Gerais: an approach using classification models. Semina: Ciências Exatas e Tecnológicas, Londrina, v. 41, n. 1, p. 79-86, Jan./June 2020. DOI: http://dx.doi.org/10.5433/1679-0375.2020v41n1p79.
url http://repositorio.ufla.br/jspui/handle/1/43330
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual de Londrina
publisher.none.fl_str_mv Universidade Estadual de Londrina
dc.source.none.fl_str_mv Semina: Ciências Exatas e Tecnológicas
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439270326829056