Enhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit molecules

Detalhes bibliográficos
Autor(a) principal: Lino, Jéssica Boreli dos Reis
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/48811
Resumo: Quantum computing is the field of science that uses quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data. The fundamental information unit used in quantum computing is the quantum bit or qubit. It is well known that quantum computers could theoretically be able to solve problems much more quickly than any classical computers. Currently, liquid state nuclear resonance magnetic (NMR) enriches quantum information processing (QIP) by inspiring new ideas for theoretical and experimental investigation, leading to technology for demonstrating quantum computing in small physical systems. Notwithstanding, molecules that enable many qubits NMR QIP implementations should meet some conditions regarding their spectroscopic properties. First, exceptionally large through-space (TS) P-P SSCCs observed in 1,8-diphosphanaphthalenes (PPN) and in naphtho[1,8-cd]-1,2-dithiole phenylphosphines (NTP) were proposed and investigated to provide more accurate control within large-scale NMR QIP. Spectroscopic properties of PPN and NTP derivatives, as chemical shifts and through-space spin-spin couplings were explored by theoretical strategies. From our results, the derivatives PPNo-F, PPNo-ethyl and PPNo-NH2 were the best candidates for quantum information processing via NMR, where the large TS J could circumvent the need of long-time quantum gate implementations. Which could, in principle, overcome natural limitations related to the development of large-scale NMR QIP. In the second paper, we report a computational design strategy for prescreening recently synthesized complexes of cadmium, mercury, tellurium, selenium, and phosphorus (called MRE complexes) as suitable qubit molecules for NMR QIP. Chemical shifts and spin−spin coupling constants in five MRE complexes were examined using the spin−orbit zeroth order regular approximation (ZORA) at the density functional theory level and the four-component relativistic Dirac-Kohn-Sham approach. Assembled together with the most common qubits used in NMR quantum computation experiments, spin-1/2 nuclei, such as 113Cd, 199Hg, 125Te, and 77Se, could leverage the prospective scalable quantum computer architectures, enabling many and heteronuclear qubits for NMR QIP implementations.
id UFLA_b073100b5516985e9d64a9711a9a17b3
oai_identifier_str oai:localhost:1/48811
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Enhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit moleculesCálculos de parâmetros de NMRComputação quânticaInformação quânticaNMR parameters calculationsQuantum computationQuantum informationQuímicaQuantum computing is the field of science that uses quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data. The fundamental information unit used in quantum computing is the quantum bit or qubit. It is well known that quantum computers could theoretically be able to solve problems much more quickly than any classical computers. Currently, liquid state nuclear resonance magnetic (NMR) enriches quantum information processing (QIP) by inspiring new ideas for theoretical and experimental investigation, leading to technology for demonstrating quantum computing in small physical systems. Notwithstanding, molecules that enable many qubits NMR QIP implementations should meet some conditions regarding their spectroscopic properties. First, exceptionally large through-space (TS) P-P SSCCs observed in 1,8-diphosphanaphthalenes (PPN) and in naphtho[1,8-cd]-1,2-dithiole phenylphosphines (NTP) were proposed and investigated to provide more accurate control within large-scale NMR QIP. Spectroscopic properties of PPN and NTP derivatives, as chemical shifts and through-space spin-spin couplings were explored by theoretical strategies. From our results, the derivatives PPNo-F, PPNo-ethyl and PPNo-NH2 were the best candidates for quantum information processing via NMR, where the large TS J could circumvent the need of long-time quantum gate implementations. Which could, in principle, overcome natural limitations related to the development of large-scale NMR QIP. In the second paper, we report a computational design strategy for prescreening recently synthesized complexes of cadmium, mercury, tellurium, selenium, and phosphorus (called MRE complexes) as suitable qubit molecules for NMR QIP. Chemical shifts and spin−spin coupling constants in five MRE complexes were examined using the spin−orbit zeroth order regular approximation (ZORA) at the density functional theory level and the four-component relativistic Dirac-Kohn-Sham approach. Assembled together with the most common qubits used in NMR quantum computation experiments, spin-1/2 nuclei, such as 113Cd, 199Hg, 125Te, and 77Se, could leverage the prospective scalable quantum computer architectures, enabling many and heteronuclear qubits for NMR QIP implementations.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)A computação quântica é o campo da ciência que usa fenômenos da mecânica quântica, como superposição e emaranhamento, para realizar operações em dados. A unidade de informação básica usada na computação quântica é o bit quântico ou qubit. Sabe-se que os computadores quânticos poderiam teoricamente ser capazes de resolver problemas muito mais rapidamente do que qualquer computador clássico. Atualmente, a ressonância magnética nuclear (RMN) no estado líquido enriquece o processamento da informação quântica (PIQ), inspirando novas ideias para sua investigação teórica e experimental, desenvolvendo tecnologias para demonstrar a computação quântica em pequenos sistemas físicos. Não obstante, as moléculas que permitem implementações de muitos quantum bits (qubits) no PIQ via RMN devem atender a algumas condições em relação às suas propriedades espectroscópicas. Em primeiro momento, constantes de acoplamento através do espaço (TS) de 31P-31P excepcionalmente grandes observados em 1,8-difosfanaftalenos (PPN) e em nafto[1,8-cd]-1,2-ditiole fenilfosfinas (NTP) foram propostas e investigadas com intuito de fornecer um controle mais preciso no PIQ por RMN em grande escala. Propriedades espectroscópicas de derivados de PPN e NTP, como deslocamento químicos e acoplamentos spin-spin através do espaço foram exploradas por estratégias teóricas. A partir de nossos resultados, os derivados PPNo-F, PPNo-etil e PPNo-NH2 foram os melhores candidatos para processamento de informação quântica via RMN, na qual a elevada constante de acoplamento TS poderia contornar a necessidade de longos tempos nas implementações de portas quânticas. O que poderia, em princípio, superar as limitações naturais relacionadas ao desenvolvimento do PIQ via RMN em larga escala. No segundo artigo, relatamos uma estratégia de design computacional para pré-seleção de complexos recentemente sintetizados de cádmio, mercúrio, telúrio, selênio e fósforo (chamados complexos MRE) como moléculas qubit adequadas para o PIQ via RMN. Deslocamentos químicos e constantes de acoplamento spin−spin em cinco complexos MRE foram examinados usando a aproximação regular de ordem zero (ZORA) a nível DFT (Teoria do funcional de densidade) e a abordagem relativística de quatro componentes de Dirac−Kohn−Sham. Usados juntos com os qubits mais comumente utilizados em experimentos de computação quântica via RMN, núcleos de spin-1/2, como 113Cd, 199Hg, 125Te e 77Se, podem alavancar as futuras arquiteturas de computadores quânticos escaláveis, permitindo muitos qubits heteronucleares para implementações do PIQ via RMN.Universidade Federal de LavrasPrograma de Pós-Graduação em AgroquímicaUFLAbrasilDepartamento de QuímicaRamalho, Teodorico de CastroMoura, André Farias deRojas Leyva, Moisés PorfírioMello, Paula Homem deThomasi, Sérgio ScherrerLino, Jéssica Boreli dos Reis2022-01-12T15:45:19Z2022-01-12T15:45:19Z2021-01-122021-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfLINO, J. B. dos R. Enhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit molecules. 2021. 103 p. Tese (Doutorado em Agroquímica)-Universidade Federal de Lavras, Lavras, 2021.http://repositorio.ufla.br/jspui/handle/1/48811enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2023-05-04T12:21:28Zoai:localhost:1/48811Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-04T12:21:28Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Enhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit molecules
title Enhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit molecules
spellingShingle Enhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit molecules
Lino, Jéssica Boreli dos Reis
Cálculos de parâmetros de NMR
Computação quântica
Informação quântica
NMR parameters calculations
Quantum computation
Quantum information
Química
title_short Enhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit molecules
title_full Enhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit molecules
title_fullStr Enhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit molecules
title_full_unstemmed Enhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit molecules
title_sort Enhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit molecules
author Lino, Jéssica Boreli dos Reis
author_facet Lino, Jéssica Boreli dos Reis
author_role author
dc.contributor.none.fl_str_mv Ramalho, Teodorico de Castro
Moura, André Farias de
Rojas Leyva, Moisés Porfírio
Mello, Paula Homem de
Thomasi, Sérgio Scherrer
dc.contributor.author.fl_str_mv Lino, Jéssica Boreli dos Reis
dc.subject.por.fl_str_mv Cálculos de parâmetros de NMR
Computação quântica
Informação quântica
NMR parameters calculations
Quantum computation
Quantum information
Química
topic Cálculos de parâmetros de NMR
Computação quântica
Informação quântica
NMR parameters calculations
Quantum computation
Quantum information
Química
description Quantum computing is the field of science that uses quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data. The fundamental information unit used in quantum computing is the quantum bit or qubit. It is well known that quantum computers could theoretically be able to solve problems much more quickly than any classical computers. Currently, liquid state nuclear resonance magnetic (NMR) enriches quantum information processing (QIP) by inspiring new ideas for theoretical and experimental investigation, leading to technology for demonstrating quantum computing in small physical systems. Notwithstanding, molecules that enable many qubits NMR QIP implementations should meet some conditions regarding their spectroscopic properties. First, exceptionally large through-space (TS) P-P SSCCs observed in 1,8-diphosphanaphthalenes (PPN) and in naphtho[1,8-cd]-1,2-dithiole phenylphosphines (NTP) were proposed and investigated to provide more accurate control within large-scale NMR QIP. Spectroscopic properties of PPN and NTP derivatives, as chemical shifts and through-space spin-spin couplings were explored by theoretical strategies. From our results, the derivatives PPNo-F, PPNo-ethyl and PPNo-NH2 were the best candidates for quantum information processing via NMR, where the large TS J could circumvent the need of long-time quantum gate implementations. Which could, in principle, overcome natural limitations related to the development of large-scale NMR QIP. In the second paper, we report a computational design strategy for prescreening recently synthesized complexes of cadmium, mercury, tellurium, selenium, and phosphorus (called MRE complexes) as suitable qubit molecules for NMR QIP. Chemical shifts and spin−spin coupling constants in five MRE complexes were examined using the spin−orbit zeroth order regular approximation (ZORA) at the density functional theory level and the four-component relativistic Dirac-Kohn-Sham approach. Assembled together with the most common qubits used in NMR quantum computation experiments, spin-1/2 nuclei, such as 113Cd, 199Hg, 125Te, and 77Se, could leverage the prospective scalable quantum computer architectures, enabling many and heteronuclear qubits for NMR QIP implementations.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-12
2021-12-16
2022-01-12T15:45:19Z
2022-01-12T15:45:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv LINO, J. B. dos R. Enhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit molecules. 2021. 103 p. Tese (Doutorado em Agroquímica)-Universidade Federal de Lavras, Lavras, 2021.
http://repositorio.ufla.br/jspui/handle/1/48811
identifier_str_mv LINO, J. B. dos R. Enhancing NMR quantum computation by optimizing spectroscopic parameters of potential qubit molecules. 2021. 103 p. Tese (Doutorado em Agroquímica)-Universidade Federal de Lavras, Lavras, 2021.
url http://repositorio.ufla.br/jspui/handle/1/48811
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Agroquímica
UFLA
brasil
Departamento de Química
publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Agroquímica
UFLA
brasil
Departamento de Química
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1807835226304413696