Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/40898 |
Resumo: | Knowing the dynamics of spatial–temporal precipitation distribution is of vital significance for the management of water resources, in highlight, in the northeast region of Brazil (NEB). Several models of large-scale precipitation variability are based on the normal distribution, not taking into consideration the excess of null observations that are prevalent in the daily or even monthly precipitation information of the region under study. This research proposes a novel way of modeling the trend component by using an inflated gamma distribution of zeros. The residuals of this regression are generally space–time dependent and have been modeled by a space–time covariance function. The findings show that the new techniques have provided reliable and precise precipitation estimates, exceeding the techniques used previously. The modeling provided estimates of precipitation in nonsampled locations and unobserved periods, thus serving as a tool to assist the government in improving water management, anticipating society’s needs and preventing water crises. |
id |
UFLA_bd25c9a7b554b0648e117f7d5bb275c6 |
---|---|
oai_identifier_str |
oai:localhost:1/40898 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSSWater resourcesGAMLSSGeostatisticsKnowing the dynamics of spatial–temporal precipitation distribution is of vital significance for the management of water resources, in highlight, in the northeast region of Brazil (NEB). Several models of large-scale precipitation variability are based on the normal distribution, not taking into consideration the excess of null observations that are prevalent in the daily or even monthly precipitation information of the region under study. This research proposes a novel way of modeling the trend component by using an inflated gamma distribution of zeros. The residuals of this regression are generally space–time dependent and have been modeled by a space–time covariance function. The findings show that the new techniques have provided reliable and precise precipitation estimates, exceeding the techniques used previously. The modeling provided estimates of precipitation in nonsampled locations and unobserved periods, thus serving as a tool to assist the government in improving water management, anticipating society’s needs and preventing water crises.Multidisciplinary Digital Publishing Institute2020-05-14T13:39:45Z2020-05-14T13:39:45Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMEDEIROS, E. S. de et al. Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS. Water, [S.l], v. 11, n. 11, 2019.http://repositorio.ufla.br/jspui/handle/1/40898Waterreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessMedeiros, Elias Silva deLima, Renato Ribeiro deOlinda, Ricardo Alves deDantas, Leydson G.Santos, Carlos Antonio Costa doseng2023-05-26T19:37:18Zoai:localhost:1/40898Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-26T19:37:18Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS |
title |
Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS |
spellingShingle |
Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS Medeiros, Elias Silva de Water resources GAMLSS Geostatistics |
title_short |
Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS |
title_full |
Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS |
title_fullStr |
Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS |
title_full_unstemmed |
Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS |
title_sort |
Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS |
author |
Medeiros, Elias Silva de |
author_facet |
Medeiros, Elias Silva de Lima, Renato Ribeiro de Olinda, Ricardo Alves de Dantas, Leydson G. Santos, Carlos Antonio Costa dos |
author_role |
author |
author2 |
Lima, Renato Ribeiro de Olinda, Ricardo Alves de Dantas, Leydson G. Santos, Carlos Antonio Costa dos |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Medeiros, Elias Silva de Lima, Renato Ribeiro de Olinda, Ricardo Alves de Dantas, Leydson G. Santos, Carlos Antonio Costa dos |
dc.subject.por.fl_str_mv |
Water resources GAMLSS Geostatistics |
topic |
Water resources GAMLSS Geostatistics |
description |
Knowing the dynamics of spatial–temporal precipitation distribution is of vital significance for the management of water resources, in highlight, in the northeast region of Brazil (NEB). Several models of large-scale precipitation variability are based on the normal distribution, not taking into consideration the excess of null observations that are prevalent in the daily or even monthly precipitation information of the region under study. This research proposes a novel way of modeling the trend component by using an inflated gamma distribution of zeros. The residuals of this regression are generally space–time dependent and have been modeled by a space–time covariance function. The findings show that the new techniques have provided reliable and precise precipitation estimates, exceeding the techniques used previously. The modeling provided estimates of precipitation in nonsampled locations and unobserved periods, thus serving as a tool to assist the government in improving water management, anticipating society’s needs and preventing water crises. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2020-05-14T13:39:45Z 2020-05-14T13:39:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MEDEIROS, E. S. de et al. Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS. Water, [S.l], v. 11, n. 11, 2019. http://repositorio.ufla.br/jspui/handle/1/40898 |
identifier_str_mv |
MEDEIROS, E. S. de et al. Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS. Water, [S.l], v. 11, n. 11, 2019. |
url |
http://repositorio.ufla.br/jspui/handle/1/40898 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
Water reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1823242118790905856 |