Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS

Detalhes bibliográficos
Autor(a) principal: Medeiros, Elias Silva de
Data de Publicação: 2019
Outros Autores: Lima, Renato Ribeiro de, Olinda, Ricardo Alves de, Dantas, Leydson G., Santos, Carlos Antonio Costa dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/40898
Resumo: Knowing the dynamics of spatial–temporal precipitation distribution is of vital significance for the management of water resources, in highlight, in the northeast region of Brazil (NEB). Several models of large-scale precipitation variability are based on the normal distribution, not taking into consideration the excess of null observations that are prevalent in the daily or even monthly precipitation information of the region under study. This research proposes a novel way of modeling the trend component by using an inflated gamma distribution of zeros. The residuals of this regression are generally space–time dependent and have been modeled by a space–time covariance function. The findings show that the new techniques have provided reliable and precise precipitation estimates, exceeding the techniques used previously. The modeling provided estimates of precipitation in nonsampled locations and unobserved periods, thus serving as a tool to assist the government in improving water management, anticipating society’s needs and preventing water crises.
id UFLA_bd25c9a7b554b0648e117f7d5bb275c6
oai_identifier_str oai:localhost:1/40898
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSSWater resourcesGAMLSSGeostatisticsKnowing the dynamics of spatial–temporal precipitation distribution is of vital significance for the management of water resources, in highlight, in the northeast region of Brazil (NEB). Several models of large-scale precipitation variability are based on the normal distribution, not taking into consideration the excess of null observations that are prevalent in the daily or even monthly precipitation information of the region under study. This research proposes a novel way of modeling the trend component by using an inflated gamma distribution of zeros. The residuals of this regression are generally space–time dependent and have been modeled by a space–time covariance function. The findings show that the new techniques have provided reliable and precise precipitation estimates, exceeding the techniques used previously. The modeling provided estimates of precipitation in nonsampled locations and unobserved periods, thus serving as a tool to assist the government in improving water management, anticipating society’s needs and preventing water crises.Multidisciplinary Digital Publishing Institute2020-05-14T13:39:45Z2020-05-14T13:39:45Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMEDEIROS, E. S. de et al. Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS. Water, [S.l], v. 11, n. 11, 2019.http://repositorio.ufla.br/jspui/handle/1/40898Waterreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessMedeiros, Elias Silva deLima, Renato Ribeiro deOlinda, Ricardo Alves deDantas, Leydson G.Santos, Carlos Antonio Costa doseng2023-05-26T19:37:18Zoai:localhost:1/40898Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-26T19:37:18Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS
title Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS
spellingShingle Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS
Medeiros, Elias Silva de
Water resources
GAMLSS
Geostatistics
title_short Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS
title_full Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS
title_fullStr Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS
title_full_unstemmed Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS
title_sort Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS
author Medeiros, Elias Silva de
author_facet Medeiros, Elias Silva de
Lima, Renato Ribeiro de
Olinda, Ricardo Alves de
Dantas, Leydson G.
Santos, Carlos Antonio Costa dos
author_role author
author2 Lima, Renato Ribeiro de
Olinda, Ricardo Alves de
Dantas, Leydson G.
Santos, Carlos Antonio Costa dos
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Medeiros, Elias Silva de
Lima, Renato Ribeiro de
Olinda, Ricardo Alves de
Dantas, Leydson G.
Santos, Carlos Antonio Costa dos
dc.subject.por.fl_str_mv Water resources
GAMLSS
Geostatistics
topic Water resources
GAMLSS
Geostatistics
description Knowing the dynamics of spatial–temporal precipitation distribution is of vital significance for the management of water resources, in highlight, in the northeast region of Brazil (NEB). Several models of large-scale precipitation variability are based on the normal distribution, not taking into consideration the excess of null observations that are prevalent in the daily or even monthly precipitation information of the region under study. This research proposes a novel way of modeling the trend component by using an inflated gamma distribution of zeros. The residuals of this regression are generally space–time dependent and have been modeled by a space–time covariance function. The findings show that the new techniques have provided reliable and precise precipitation estimates, exceeding the techniques used previously. The modeling provided estimates of precipitation in nonsampled locations and unobserved periods, thus serving as a tool to assist the government in improving water management, anticipating society’s needs and preventing water crises.
publishDate 2019
dc.date.none.fl_str_mv 2019
2020-05-14T13:39:45Z
2020-05-14T13:39:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv MEDEIROS, E. S. de et al. Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS. Water, [S.l], v. 11, n. 11, 2019.
http://repositorio.ufla.br/jspui/handle/1/40898
identifier_str_mv MEDEIROS, E. S. de et al. Space-time kriging of precipitation: modeling the large-scale variation with model GAMLSS. Water, [S.l], v. 11, n. 11, 2019.
url http://repositorio.ufla.br/jspui/handle/1/40898
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv Water
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1823242118790905856