Performance of the probability distribution models applied to heavy rainfall daily events
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/13146 |
Resumo: | Probabilistic studies of hydrological variables, such as heavy rainfall daily events, constitute an important tool to support the planning and management of water resources, especially for the design of hydraulic structures and erosive rainfall potential. In this context, we aimed to analyze the performance of three probability distribution models (GEV, Gumbel and Gamma two parameter), whose parameters were adjusted by the Moments Method (MM), Maximum Likelihood (ML) and L - Moments (LM). These models were adjusted to the frequencies from long-term of maximum daily rainfall of 8 rain gauges located in Minas Gerais state. To indicate and discuss the performance of the probability distribution models, it was applied, firstly, the non-parametric Filliben test, and in addition, when differences were unidentified, Anderson-Darlling and Chi-Squared tests were also applied. The Gumbel probability distribution model showed a better adjustment for 87.5% of the cases. Among the assessed probability distribution models, GEV fitted by LM method has been adequate for all studied rain gauges and can be recommended. Considering the number of adequate cases, MM and LM methods had better performance than ML method, presenting, respectively, 83% and 79.2% of adequate cases. |
id |
UFLA_bff3449beaa0576ffea49c831f33d2bc |
---|---|
oai_identifier_str |
oai:localhost:1/13146 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Performance of the probability distribution models applied to heavy rainfall daily eventsDesempenho de distribuições de probabilidades aplicadas a eventos extremos de precipitação diáriaProbability distribution modelsIntense rainfallStatistical inferenceNon-parametric statistical testsDistribuição de probabilidadesChuvas intensasInferência estatísticaTestes estatísticos não paramétricosProbabilistic studies of hydrological variables, such as heavy rainfall daily events, constitute an important tool to support the planning and management of water resources, especially for the design of hydraulic structures and erosive rainfall potential. In this context, we aimed to analyze the performance of three probability distribution models (GEV, Gumbel and Gamma two parameter), whose parameters were adjusted by the Moments Method (MM), Maximum Likelihood (ML) and L - Moments (LM). These models were adjusted to the frequencies from long-term of maximum daily rainfall of 8 rain gauges located in Minas Gerais state. To indicate and discuss the performance of the probability distribution models, it was applied, firstly, the non-parametric Filliben test, and in addition, when differences were unidentified, Anderson-Darlling and Chi-Squared tests were also applied. The Gumbel probability distribution model showed a better adjustment for 87.5% of the cases. Among the assessed probability distribution models, GEV fitted by LM method has been adequate for all studied rain gauges and can be recommended. Considering the number of adequate cases, MM and LM methods had better performance than ML method, presenting, respectively, 83% and 79.2% of adequate cases.Estudos probabilísticos de variáveis hidrológicas, como a precipitação pluvial diária máxima, constituem-se um importante instrumento de apoio para o planejamento e gestão de recursos hídricos, principalmente quando associados ao dimensionamento de estruturas hidráulicas e potencial erosivo. Neste contexto, objetivou-se analisar o desempenho de três distribuições de probabilidades (GEV, Gumbel e Gama a dois parâmetros), cujos parâmetros foram ajustados pelos métodos dos Momentos (MM), da Máxima Verossimilhança (ML) e dos Momentos-L (ML), aplicados às séries históricas de precipitação diária máxima de 8 estações pluviométricas, localizadas no centro oeste de Minas Gerais. Para a verificação da melhor combinação distribuição de probabilidade e método de estimativa dos parâmetros das distribuições, aplicou-se o teste de aderência de Filliben, e, complementarmente, quando não identificadas diferenças, utilizou-se dos testes de Anderson Darlling e Qui-quadrado. A Distribuição de Probabilidades de Gumbel apresentou melhor desempenho, ajuste em 87,5% dos casos. Entre as distribuições de probabilidades avaliadas, a GEV ajustada por ML, apresentou aderência para todas as estações pluviométricas, podendo ser indicada. Considerando o numero de ajustes verificados, os métodos de estimação dos parâmetros MM e ML apresentaram melhor desempenho do que o método ML, apresentando, respectivamente, 83% 79.2% de casos adequados.Universidade Federal de Lavras2017-06-05T21:44:52Z2017-06-05T21:44:52Z2014-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMARQUES, R. F. de P. V. et al. Performance of the probability distribution models applied to heavy rainfall daily events. Ciência e Agrotecnologia, Lavras, v. 38, n. 4, p. 335-342, jul./ago. 2014.http://repositorio.ufla.br/jspui/handle/1/13146Ciência e Agrotecnologiareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAMarques, Rosângela Francisca de Paula VitorMello, Carlos Rogério deSilva, Antônio Marciano daFranco, Camila SilvaOliveira, Alisson Souza deinfo:eu-repo/semantics/openAccesseng2017-06-05T21:44:52Zoai:localhost:1/13146Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2017-06-05T21:44:52Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Performance of the probability distribution models applied to heavy rainfall daily events Desempenho de distribuições de probabilidades aplicadas a eventos extremos de precipitação diária |
title |
Performance of the probability distribution models applied to heavy rainfall daily events |
spellingShingle |
Performance of the probability distribution models applied to heavy rainfall daily events Marques, Rosângela Francisca de Paula Vitor Probability distribution models Intense rainfall Statistical inference Non-parametric statistical tests Distribuição de probabilidades Chuvas intensas Inferência estatística Testes estatísticos não paramétricos |
title_short |
Performance of the probability distribution models applied to heavy rainfall daily events |
title_full |
Performance of the probability distribution models applied to heavy rainfall daily events |
title_fullStr |
Performance of the probability distribution models applied to heavy rainfall daily events |
title_full_unstemmed |
Performance of the probability distribution models applied to heavy rainfall daily events |
title_sort |
Performance of the probability distribution models applied to heavy rainfall daily events |
author |
Marques, Rosângela Francisca de Paula Vitor |
author_facet |
Marques, Rosângela Francisca de Paula Vitor Mello, Carlos Rogério de Silva, Antônio Marciano da Franco, Camila Silva Oliveira, Alisson Souza de |
author_role |
author |
author2 |
Mello, Carlos Rogério de Silva, Antônio Marciano da Franco, Camila Silva Oliveira, Alisson Souza de |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Marques, Rosângela Francisca de Paula Vitor Mello, Carlos Rogério de Silva, Antônio Marciano da Franco, Camila Silva Oliveira, Alisson Souza de |
dc.subject.por.fl_str_mv |
Probability distribution models Intense rainfall Statistical inference Non-parametric statistical tests Distribuição de probabilidades Chuvas intensas Inferência estatística Testes estatísticos não paramétricos |
topic |
Probability distribution models Intense rainfall Statistical inference Non-parametric statistical tests Distribuição de probabilidades Chuvas intensas Inferência estatística Testes estatísticos não paramétricos |
description |
Probabilistic studies of hydrological variables, such as heavy rainfall daily events, constitute an important tool to support the planning and management of water resources, especially for the design of hydraulic structures and erosive rainfall potential. In this context, we aimed to analyze the performance of three probability distribution models (GEV, Gumbel and Gamma two parameter), whose parameters were adjusted by the Moments Method (MM), Maximum Likelihood (ML) and L - Moments (LM). These models were adjusted to the frequencies from long-term of maximum daily rainfall of 8 rain gauges located in Minas Gerais state. To indicate and discuss the performance of the probability distribution models, it was applied, firstly, the non-parametric Filliben test, and in addition, when differences were unidentified, Anderson-Darlling and Chi-Squared tests were also applied. The Gumbel probability distribution model showed a better adjustment for 87.5% of the cases. Among the assessed probability distribution models, GEV fitted by LM method has been adequate for all studied rain gauges and can be recommended. Considering the number of adequate cases, MM and LM methods had better performance than ML method, presenting, respectively, 83% and 79.2% of adequate cases. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07 2017-06-05T21:44:52Z 2017-06-05T21:44:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MARQUES, R. F. de P. V. et al. Performance of the probability distribution models applied to heavy rainfall daily events. Ciência e Agrotecnologia, Lavras, v. 38, n. 4, p. 335-342, jul./ago. 2014. http://repositorio.ufla.br/jspui/handle/1/13146 |
identifier_str_mv |
MARQUES, R. F. de P. V. et al. Performance of the probability distribution models applied to heavy rainfall daily events. Ciência e Agrotecnologia, Lavras, v. 38, n. 4, p. 335-342, jul./ago. 2014. |
url |
http://repositorio.ufla.br/jspui/handle/1/13146 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras |
publisher.none.fl_str_mv |
Universidade Federal de Lavras |
dc.source.none.fl_str_mv |
Ciência e Agrotecnologia reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439033364381696 |