Performance of the probability distribution models applied to heavy rainfall daily events

Detalhes bibliográficos
Autor(a) principal: Marques, Rosângela Francisca de Paula Vitor
Data de Publicação: 2014
Outros Autores: Mello, Carlos Rogério de, Silva, Antônio Marciano da, Franco, Camila Silva, Oliveira, Alisson Souza de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/13146
Resumo: Probabilistic studies of hydrological variables, such as heavy rainfall daily events, constitute an important tool to support the planning and management of water resources, especially for the design of hydraulic structures and erosive rainfall potential. In this context, we aimed to analyze the performance of three probability distribution models (GEV, Gumbel and Gamma two parameter), whose parameters were adjusted by the Moments Method (MM), Maximum Likelihood (ML) and L - Moments (LM). These models were adjusted to the frequencies from long-term of maximum daily rainfall of 8 rain gauges located in Minas Gerais state. To indicate and discuss the performance of the probability distribution models, it was applied, firstly, the non-parametric Filliben test, and in addition, when differences were unidentified, Anderson-Darlling and Chi-Squared tests were also applied. The Gumbel probability distribution model showed a better adjustment for 87.5% of the cases. Among the assessed probability distribution models, GEV fitted by LM method has been adequate for all studied rain gauges and can be recommended. Considering the number of adequate cases, MM and LM methods had better performance than ML method, presenting, respectively, 83% and 79.2% of adequate cases.
id UFLA_bff3449beaa0576ffea49c831f33d2bc
oai_identifier_str oai:localhost:1/13146
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Performance of the probability distribution models applied to heavy rainfall daily eventsDesempenho de distribuições de probabilidades aplicadas a eventos extremos de precipitação diáriaProbability distribution modelsIntense rainfallStatistical inferenceNon-parametric statistical testsDistribuição de probabilidadesChuvas intensasInferência estatísticaTestes estatísticos não paramétricosProbabilistic studies of hydrological variables, such as heavy rainfall daily events, constitute an important tool to support the planning and management of water resources, especially for the design of hydraulic structures and erosive rainfall potential. In this context, we aimed to analyze the performance of three probability distribution models (GEV, Gumbel and Gamma two parameter), whose parameters were adjusted by the Moments Method (MM), Maximum Likelihood (ML) and L - Moments (LM). These models were adjusted to the frequencies from long-term of maximum daily rainfall of 8 rain gauges located in Minas Gerais state. To indicate and discuss the performance of the probability distribution models, it was applied, firstly, the non-parametric Filliben test, and in addition, when differences were unidentified, Anderson-Darlling and Chi-Squared tests were also applied. The Gumbel probability distribution model showed a better adjustment for 87.5% of the cases. Among the assessed probability distribution models, GEV fitted by LM method has been adequate for all studied rain gauges and can be recommended. Considering the number of adequate cases, MM and LM methods had better performance than ML method, presenting, respectively, 83% and 79.2% of adequate cases.Estudos probabilísticos de variáveis hidrológicas, como a precipitação pluvial diária máxima, constituem-se um importante instrumento de apoio para o planejamento e gestão de recursos hídricos, principalmente quando associados ao dimensionamento de estruturas hidráulicas e potencial erosivo. Neste contexto, objetivou-se analisar o desempenho de três distribuições de probabilidades (GEV, Gumbel e Gama a dois parâmetros), cujos parâmetros foram ajustados pelos métodos dos Momentos (MM), da Máxima Verossimilhança (ML) e dos Momentos-L (ML), aplicados às séries históricas de precipitação diária máxima de 8 estações pluviométricas, localizadas no centro oeste de Minas Gerais. Para a verificação da melhor combinação distribuição de probabilidade e método de estimativa dos parâmetros das distribuições, aplicou-se o teste de aderência de Filliben, e, complementarmente, quando não identificadas diferenças, utilizou-se dos testes de Anderson Darlling e Qui-quadrado. A Distribuição de Probabilidades de Gumbel apresentou melhor desempenho, ajuste em 87,5% dos casos. Entre as distribuições de probabilidades avaliadas, a GEV ajustada por ML, apresentou aderência para todas as estações pluviométricas, podendo ser indicada. Considerando o numero de ajustes verificados, os métodos de estimação dos parâmetros MM e ML apresentaram melhor desempenho do que o método ML, apresentando, respectivamente, 83% 79.2% de casos adequados.Universidade Federal de Lavras2017-06-05T21:44:52Z2017-06-05T21:44:52Z2014-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMARQUES, R. F. de P. V. et al. Performance of the probability distribution models applied to heavy rainfall daily events. Ciência e Agrotecnologia, Lavras, v. 38, n. 4, p. 335-342, jul./ago. 2014.http://repositorio.ufla.br/jspui/handle/1/13146Ciência e Agrotecnologiareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAMarques, Rosângela Francisca de Paula VitorMello, Carlos Rogério deSilva, Antônio Marciano daFranco, Camila SilvaOliveira, Alisson Souza deinfo:eu-repo/semantics/openAccesseng2017-06-05T21:44:52Zoai:localhost:1/13146Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2017-06-05T21:44:52Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Performance of the probability distribution models applied to heavy rainfall daily events
Desempenho de distribuições de probabilidades aplicadas a eventos extremos de precipitação diária
title Performance of the probability distribution models applied to heavy rainfall daily events
spellingShingle Performance of the probability distribution models applied to heavy rainfall daily events
Marques, Rosângela Francisca de Paula Vitor
Probability distribution models
Intense rainfall
Statistical inference
Non-parametric statistical tests
Distribuição de probabilidades
Chuvas intensas
Inferência estatística
Testes estatísticos não paramétricos
title_short Performance of the probability distribution models applied to heavy rainfall daily events
title_full Performance of the probability distribution models applied to heavy rainfall daily events
title_fullStr Performance of the probability distribution models applied to heavy rainfall daily events
title_full_unstemmed Performance of the probability distribution models applied to heavy rainfall daily events
title_sort Performance of the probability distribution models applied to heavy rainfall daily events
author Marques, Rosângela Francisca de Paula Vitor
author_facet Marques, Rosângela Francisca de Paula Vitor
Mello, Carlos Rogério de
Silva, Antônio Marciano da
Franco, Camila Silva
Oliveira, Alisson Souza de
author_role author
author2 Mello, Carlos Rogério de
Silva, Antônio Marciano da
Franco, Camila Silva
Oliveira, Alisson Souza de
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Marques, Rosângela Francisca de Paula Vitor
Mello, Carlos Rogério de
Silva, Antônio Marciano da
Franco, Camila Silva
Oliveira, Alisson Souza de
dc.subject.por.fl_str_mv Probability distribution models
Intense rainfall
Statistical inference
Non-parametric statistical tests
Distribuição de probabilidades
Chuvas intensas
Inferência estatística
Testes estatísticos não paramétricos
topic Probability distribution models
Intense rainfall
Statistical inference
Non-parametric statistical tests
Distribuição de probabilidades
Chuvas intensas
Inferência estatística
Testes estatísticos não paramétricos
description Probabilistic studies of hydrological variables, such as heavy rainfall daily events, constitute an important tool to support the planning and management of water resources, especially for the design of hydraulic structures and erosive rainfall potential. In this context, we aimed to analyze the performance of three probability distribution models (GEV, Gumbel and Gamma two parameter), whose parameters were adjusted by the Moments Method (MM), Maximum Likelihood (ML) and L - Moments (LM). These models were adjusted to the frequencies from long-term of maximum daily rainfall of 8 rain gauges located in Minas Gerais state. To indicate and discuss the performance of the probability distribution models, it was applied, firstly, the non-parametric Filliben test, and in addition, when differences were unidentified, Anderson-Darlling and Chi-Squared tests were also applied. The Gumbel probability distribution model showed a better adjustment for 87.5% of the cases. Among the assessed probability distribution models, GEV fitted by LM method has been adequate for all studied rain gauges and can be recommended. Considering the number of adequate cases, MM and LM methods had better performance than ML method, presenting, respectively, 83% and 79.2% of adequate cases.
publishDate 2014
dc.date.none.fl_str_mv 2014-07
2017-06-05T21:44:52Z
2017-06-05T21:44:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv MARQUES, R. F. de P. V. et al. Performance of the probability distribution models applied to heavy rainfall daily events. Ciência e Agrotecnologia, Lavras, v. 38, n. 4, p. 335-342, jul./ago. 2014.
http://repositorio.ufla.br/jspui/handle/1/13146
identifier_str_mv MARQUES, R. F. de P. V. et al. Performance of the probability distribution models applied to heavy rainfall daily events. Ciência e Agrotecnologia, Lavras, v. 38, n. 4, p. 335-342, jul./ago. 2014.
url http://repositorio.ufla.br/jspui/handle/1/13146
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
publisher.none.fl_str_mv Universidade Federal de Lavras
dc.source.none.fl_str_mv Ciência e Agrotecnologia
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439033364381696