Use of artificial neural networks for prognosis of charcoal prices in Minas Gerais

Detalhes bibliográficos
Autor(a) principal: Coelho Junior, Luiz Moreira
Data de Publicação: 2016
Outros Autores: Rezende, José Luiz Pereira de, Batista, André Luiz França, Mendonça, Adriano Ribeiro de, Lacerda, Wilian Soares
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/14377
Resumo: Energy is an important factor of economic growth and is critical to the stability of a nation. Charcoal is a renewable energy resource and is a fundamental input to the development of the Brazilian forest-based industry. The objective of this study is to provide a prognosis of the charcoal price series for the year 2007 by using Artificial Neural Networks. A feedforward multilayer perceptron ANN was used, the results of which are close to reality. The main findings are that: real prices of charcoal dropped between 1975 and 2000 and rose from the early 21st century; the ANN with two hidden layers was the architecture making the best prediction; the most effective learning rate was 0.99 and 600 cycles, representing the most satisfactory and accurate ANN training. Prediction using ANN was found to be more accurate when compared by the mean squared error to other studies modeling charcoal price series in Minas Gerais state. 
id UFLA_c369972d4ac0892c34daee548509a2e2
oai_identifier_str oai:localhost:1/14377
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Use of artificial neural networks for prognosis of charcoal prices in Minas GeraisUso de redes neurais artificiais para a prognose dos preços do carvão vegetal em Minas GeraisForest economicsPredictionTime seriesEconomia florestalSéries temporaisPrevisãoEnergy is an important factor of economic growth and is critical to the stability of a nation. Charcoal is a renewable energy resource and is a fundamental input to the development of the Brazilian forest-based industry. The objective of this study is to provide a prognosis of the charcoal price series for the year 2007 by using Artificial Neural Networks. A feedforward multilayer perceptron ANN was used, the results of which are close to reality. The main findings are that: real prices of charcoal dropped between 1975 and 2000 and rose from the early 21st century; the ANN with two hidden layers was the architecture making the best prediction; the most effective learning rate was 0.99 and 600 cycles, representing the most satisfactory and accurate ANN training. Prediction using ANN was found to be more accurate when compared by the mean squared error to other studies modeling charcoal price series in Minas Gerais state. A energia é um importante fator de crescimento econômico e vital para a estabilidade de uma nação. O carvão vegetal é um recurso energético renovável, um dos insumos básicos responsáveis pelo desenvolvimento das indústrias de base florestal no Brasil. Objetivou-se, neste artigo, fazer a prognose para o ano de 2007 da série de preços do carvão vegetal, utilizando as Redes Neurais Artificiais. Foi utilizada a RNA perceptron de camadas múltiplas, feed-forward, cujos resultados são próximos da realidade. Os principais resultados encontrados foram: os preços reais do carvão vegetal foram declinantes no período de 1975 a 2000 e crescentes a partir do início do século XXI; a arquitetura da Rede Neural Artificial que realizou melhor previsão foi a com duas camadas escondidas; a taxa de aprendizagem mais eficiente foi de 0,99 e 600 ciclos, que representou treinamento da RNA mais satisfatório e mais preciso. A previsão, usando a RNA, se mostrou mais precisa quando comparada pelo erro quadrático médio de previsão de outros estudos para a série de preços de carvão vegetal em Minas GeraisUniversidade Federal de Lavras (UFLA)2016-04-052017-08-01T20:14:25Z2017-08-01T20:14:25Z2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfCOELHO JUNIOR, L. M. et al. Use of artificial neural networks for prognosis of charcoal prices in Minas Gerais. CERNE, Lavras, v. 19, n. 2, p. 281-288, abr./jun. 2013.http://repositorio.ufla.br/jspui/handle/1/143772317-63420104-7760reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttp://www.cerne.ufla.br/site/index.php/CERNE/article/view/902/679Copyright (c) 2016 CERNEhttp://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalinfo:eu-repo/semantics/openAccessCoelho Junior, Luiz MoreiraRezende, José Luiz Pereira deBatista, André Luiz FrançaMendonça, Adriano Ribeiro deLacerda, Wilian Soares2021-05-06T19:47:31Zoai:localhost:1/14377Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-05-06T19:47:31Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Use of artificial neural networks for prognosis of charcoal prices in Minas Gerais
Uso de redes neurais artificiais para a prognose dos preços do carvão vegetal em Minas Gerais
title Use of artificial neural networks for prognosis of charcoal prices in Minas Gerais
spellingShingle Use of artificial neural networks for prognosis of charcoal prices in Minas Gerais
Coelho Junior, Luiz Moreira
Forest economics
Prediction
Time series
Economia florestal
Séries temporais
Previsão
title_short Use of artificial neural networks for prognosis of charcoal prices in Minas Gerais
title_full Use of artificial neural networks for prognosis of charcoal prices in Minas Gerais
title_fullStr Use of artificial neural networks for prognosis of charcoal prices in Minas Gerais
title_full_unstemmed Use of artificial neural networks for prognosis of charcoal prices in Minas Gerais
title_sort Use of artificial neural networks for prognosis of charcoal prices in Minas Gerais
author Coelho Junior, Luiz Moreira
author_facet Coelho Junior, Luiz Moreira
Rezende, José Luiz Pereira de
Batista, André Luiz França
Mendonça, Adriano Ribeiro de
Lacerda, Wilian Soares
author_role author
author2 Rezende, José Luiz Pereira de
Batista, André Luiz França
Mendonça, Adriano Ribeiro de
Lacerda, Wilian Soares
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Coelho Junior, Luiz Moreira
Rezende, José Luiz Pereira de
Batista, André Luiz França
Mendonça, Adriano Ribeiro de
Lacerda, Wilian Soares
dc.subject.por.fl_str_mv Forest economics
Prediction
Time series
Economia florestal
Séries temporais
Previsão
topic Forest economics
Prediction
Time series
Economia florestal
Séries temporais
Previsão
description Energy is an important factor of economic growth and is critical to the stability of a nation. Charcoal is a renewable energy resource and is a fundamental input to the development of the Brazilian forest-based industry. The objective of this study is to provide a prognosis of the charcoal price series for the year 2007 by using Artificial Neural Networks. A feedforward multilayer perceptron ANN was used, the results of which are close to reality. The main findings are that: real prices of charcoal dropped between 1975 and 2000 and rose from the early 21st century; the ANN with two hidden layers was the architecture making the best prediction; the most effective learning rate was 0.99 and 600 cycles, representing the most satisfactory and accurate ANN training. Prediction using ANN was found to be more accurate when compared by the mean squared error to other studies modeling charcoal price series in Minas Gerais state. 
publishDate 2016
dc.date.none.fl_str_mv 2016-04-05
2017-08-01T20:14:25Z
2017-08-01T20:14:25Z
2017-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv COELHO JUNIOR, L. M. et al. Use of artificial neural networks for prognosis of charcoal prices in Minas Gerais. CERNE, Lavras, v. 19, n. 2, p. 281-288, abr./jun. 2013.
http://repositorio.ufla.br/jspui/handle/1/14377
identifier_str_mv COELHO JUNIOR, L. M. et al. Use of artificial neural networks for prognosis of charcoal prices in Minas Gerais. CERNE, Lavras, v. 19, n. 2, p. 281-288, abr./jun. 2013.
url http://repositorio.ufla.br/jspui/handle/1/14377
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.cerne.ufla.br/site/index.php/CERNE/article/view/902/679
dc.rights.driver.fl_str_mv Copyright (c) 2016 CERNE
http://creativecommons.org/licenses/by/4.0/
Attribution 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2016 CERNE
http://creativecommons.org/licenses/by/4.0/
Attribution 4.0 International
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras (UFLA)
publisher.none.fl_str_mv Universidade Federal de Lavras (UFLA)
dc.source.none.fl_str_mv 2317-6342
0104-7760
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439047815856128