Reconhecimento facial baseado no algoritmo de aprendizado profundo YOLO

Detalhes bibliográficos
Autor(a) principal: Ribeiro, David Augusto
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/49119
Resumo: Technological development has made it possible for man in recent decades to make a great leap in computational processing techniques aimed at Artificial Neural Networks (ANN). Facial biometrics is a growing area in the world, and its applications are interesting for both private and public companies. Its growing ability to authenticate in security and entertainment systems makes it one of the best means of identity validation and/or people flow monitoring. However, we still come across systems that have a certain slowness in recognition and that demand high processing power. The objective is, then, to supply this demand with a light and robust recognition architecture, and that at the same time presents optimized performance indexes, such as average precision (mAP - Mean Average Precision), inference, low response time and intersection over union (IoU - Intersection Over Union). The present work presents a supervised learning process, in which an emerging architecture is used that has been highlighted in the scenario of pattern recognition systems in image processing. It is programmed in Python and C languages, using OpenCV and Darknet frameworks in YOLOv4 architecture (version 4). The ANN is worked on in a cloud virtual machine with NVIDIA Tesla T4 GPU in Colab environment, training it in 3 different databases: OIDv4, Personal and Wider Face. Our system can also operate locally on Linux systems such as Ubuntu Minimal, which in turn requires basic configuration adjustments in the Jupyter IDE. The results show the optimized sorting/detection capability in the YOLO architecture, as well as achieving improved indices on the job. The dataset OID obtained a mAP of 69.23% for object class, with an average inference of 82.2%, detection time of 16 seconds and reached an IoU of 52.63%. The second dataset Personal achieved an incredible 99.11% mAP in individual recognition facial biometrics, with an average inference of 98%, detection time of 3 seconds and achieved an IoU of 82.56%. And finally, the third dataset Wider Face, obtained a mAP of 86.04% in multivariate facial biometrics, with an average inference of 91%, detection time of 5 seconds and reached an IoU of 61.32% . The results, therefore, demonstrate the quality of the neural network developed in virtue of the objectives initially proposed, in which they are promising in relation to comparisons with other models in the literature in the state of the art in recent years.
id UFLA_c554ec7c2b4e050c433a0258b9f18bfc
oai_identifier_str oai:localhost:1/49119
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Reconhecimento facial baseado no algoritmo de aprendizado profundo YOLOFace recognition based on the YOLO deep learning algorithmReconhecimento facialBiometriaRedes neurais artificiaisReconhecimento de padrõesYOLOFacial recognitionBiometryArtificial neural networksPattern recognitionEngenharia de SoftwareTechnological development has made it possible for man in recent decades to make a great leap in computational processing techniques aimed at Artificial Neural Networks (ANN). Facial biometrics is a growing area in the world, and its applications are interesting for both private and public companies. Its growing ability to authenticate in security and entertainment systems makes it one of the best means of identity validation and/or people flow monitoring. However, we still come across systems that have a certain slowness in recognition and that demand high processing power. The objective is, then, to supply this demand with a light and robust recognition architecture, and that at the same time presents optimized performance indexes, such as average precision (mAP - Mean Average Precision), inference, low response time and intersection over union (IoU - Intersection Over Union). The present work presents a supervised learning process, in which an emerging architecture is used that has been highlighted in the scenario of pattern recognition systems in image processing. It is programmed in Python and C languages, using OpenCV and Darknet frameworks in YOLOv4 architecture (version 4). The ANN is worked on in a cloud virtual machine with NVIDIA Tesla T4 GPU in Colab environment, training it in 3 different databases: OIDv4, Personal and Wider Face. Our system can also operate locally on Linux systems such as Ubuntu Minimal, which in turn requires basic configuration adjustments in the Jupyter IDE. The results show the optimized sorting/detection capability in the YOLO architecture, as well as achieving improved indices on the job. The dataset OID obtained a mAP of 69.23% for object class, with an average inference of 82.2%, detection time of 16 seconds and reached an IoU of 52.63%. The second dataset Personal achieved an incredible 99.11% mAP in individual recognition facial biometrics, with an average inference of 98%, detection time of 3 seconds and achieved an IoU of 82.56%. And finally, the third dataset Wider Face, obtained a mAP of 86.04% in multivariate facial biometrics, with an average inference of 91%, detection time of 5 seconds and reached an IoU of 61.32% . The results, therefore, demonstrate the quality of the neural network developed in virtue of the objectives initially proposed, in which they are promising in relation to comparisons with other models in the literature in the state of the art in recent years.O desenvolvimento tecnológico possibilitou ao homem nas últimas décadas dar um grande salto em técnicas de processamento computacional voltado às Redes Neurais Artificiais (RNA). A biometria facial é uma área que está em crescimento no mundo, e suas aplicações são interessantes, tanto para empresas privadas, quanto públicas. Sua capacidade crescente de autenticação em sistemas de segurança e entretenimento a torna um dos melhores meios para validação de identidade e/ou monitoramento de fluxo de pessoas. No entanto, ainda nos deparamos com sistemas que apresentam certa lentidão no reconhecimento e que demandam alto poder de processamento. Objetiva-se então, suprir essa demanda com uma arquitetura de reconhecimento leve e robusta, e que ao mesmo tempo apresente índices de desempenho otimizados, como precisão média (mAP - Mean Average Precision), inferência, baixo tempo de resposta e interseção sobre união (IoU - Intersection Over Union). O presente trabalho apresenta um processo de aprendizagem supervisionado, no qual faz-se uso de uma arquitetura emergente que vem apresentando destaque no cenário de sistemas de reconhecimento de padrões em processamento de imagens. Programa-se nas linguagens Python e C, com uso de frameworks OpenCV e Darknet em arquitetura YOLOv4 (versão 4). Trabalha-se a RNA em máquina virtual em nuvem com GPU NVIDIA Tesla T4 em ambiente Colab, treinando-a em 3 bases de dados distintas: OIDv4, Personal e Wider Face. Nosso sistema também pode operar localmente em sistemas Linux, como o Ubuntu Minimal, que por sua vez requer ajustes básicos de configuração em IDE Jupyter. Os resultados mostram a capacidade de classificação/detecção otimizada na arquitetura YOLO, bem como obtenção de índices aprimorados no trabalho. O dataset OID obteve um mAP de 69,23% para classe de objetos, com inferência média de 82.2%, tempo de detecção de 16 segundos e alcançou um IoU de 52.63%. O segundo dataset Personal obteve os incríveis mAP de 99,11% em biometria facial de reconhecimento individual, com inferência média de 98%, tempo de detecção de 3 segundos e alcançou um IoU de 82.56%. E por fim, o terceiro dataset Wider Face, obteve um mAP de 86,04% em biometria facial multivariada, com inferência média de 91%, tempo de detecção de 5 segundos e alcançou um IoU de 61.32%. Os resultados, portanto, demonstram a qualidade da rede neural desenvolvida em virtude dos objetivos inicialmente propostos, nos quais mostram-se promissores em relação à comparativos com outros modelos da literatura no estado da arte dos últimos anos.Universidade Federal de LavrasPrograma de Pós-Graduação em Engenharia de Sistemas e AutomaçãoUFLAbrasilDepartamento de EngenhariaZegarra Rodríguez, DemóstenesZegarra Rodríguez, DemóstenesRosa, Renata LopesBegazo, Dante CoaquiraRibeiro, David Augusto2022-02-01T19:05:48Z2022-02-01T19:05:48Z2022-02-012021-12-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfRIBEIRO, D. A. Reconhecimento facial baseado no algoritmo de aprendizado profundo YOLO. 2021. 105 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) – Universidade Federal de Lavras, Lavras, 2022.http://repositorio.ufla.br/jspui/handle/1/49119porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2023-05-02T12:40:22Zoai:localhost:1/49119Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-02T12:40:22Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Reconhecimento facial baseado no algoritmo de aprendizado profundo YOLO
Face recognition based on the YOLO deep learning algorithm
title Reconhecimento facial baseado no algoritmo de aprendizado profundo YOLO
spellingShingle Reconhecimento facial baseado no algoritmo de aprendizado profundo YOLO
Ribeiro, David Augusto
Reconhecimento facial
Biometria
Redes neurais artificiais
Reconhecimento de padrões
YOLO
Facial recognition
Biometry
Artificial neural networks
Pattern recognition
Engenharia de Software
title_short Reconhecimento facial baseado no algoritmo de aprendizado profundo YOLO
title_full Reconhecimento facial baseado no algoritmo de aprendizado profundo YOLO
title_fullStr Reconhecimento facial baseado no algoritmo de aprendizado profundo YOLO
title_full_unstemmed Reconhecimento facial baseado no algoritmo de aprendizado profundo YOLO
title_sort Reconhecimento facial baseado no algoritmo de aprendizado profundo YOLO
author Ribeiro, David Augusto
author_facet Ribeiro, David Augusto
author_role author
dc.contributor.none.fl_str_mv Zegarra Rodríguez, Demóstenes
Zegarra Rodríguez, Demóstenes
Rosa, Renata Lopes
Begazo, Dante Coaquira
dc.contributor.author.fl_str_mv Ribeiro, David Augusto
dc.subject.por.fl_str_mv Reconhecimento facial
Biometria
Redes neurais artificiais
Reconhecimento de padrões
YOLO
Facial recognition
Biometry
Artificial neural networks
Pattern recognition
Engenharia de Software
topic Reconhecimento facial
Biometria
Redes neurais artificiais
Reconhecimento de padrões
YOLO
Facial recognition
Biometry
Artificial neural networks
Pattern recognition
Engenharia de Software
description Technological development has made it possible for man in recent decades to make a great leap in computational processing techniques aimed at Artificial Neural Networks (ANN). Facial biometrics is a growing area in the world, and its applications are interesting for both private and public companies. Its growing ability to authenticate in security and entertainment systems makes it one of the best means of identity validation and/or people flow monitoring. However, we still come across systems that have a certain slowness in recognition and that demand high processing power. The objective is, then, to supply this demand with a light and robust recognition architecture, and that at the same time presents optimized performance indexes, such as average precision (mAP - Mean Average Precision), inference, low response time and intersection over union (IoU - Intersection Over Union). The present work presents a supervised learning process, in which an emerging architecture is used that has been highlighted in the scenario of pattern recognition systems in image processing. It is programmed in Python and C languages, using OpenCV and Darknet frameworks in YOLOv4 architecture (version 4). The ANN is worked on in a cloud virtual machine with NVIDIA Tesla T4 GPU in Colab environment, training it in 3 different databases: OIDv4, Personal and Wider Face. Our system can also operate locally on Linux systems such as Ubuntu Minimal, which in turn requires basic configuration adjustments in the Jupyter IDE. The results show the optimized sorting/detection capability in the YOLO architecture, as well as achieving improved indices on the job. The dataset OID obtained a mAP of 69.23% for object class, with an average inference of 82.2%, detection time of 16 seconds and reached an IoU of 52.63%. The second dataset Personal achieved an incredible 99.11% mAP in individual recognition facial biometrics, with an average inference of 98%, detection time of 3 seconds and achieved an IoU of 82.56%. And finally, the third dataset Wider Face, obtained a mAP of 86.04% in multivariate facial biometrics, with an average inference of 91%, detection time of 5 seconds and reached an IoU of 61.32% . The results, therefore, demonstrate the quality of the neural network developed in virtue of the objectives initially proposed, in which they are promising in relation to comparisons with other models in the literature in the state of the art in recent years.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-15
2022-02-01T19:05:48Z
2022-02-01T19:05:48Z
2022-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv RIBEIRO, D. A. Reconhecimento facial baseado no algoritmo de aprendizado profundo YOLO. 2021. 105 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) – Universidade Federal de Lavras, Lavras, 2022.
http://repositorio.ufla.br/jspui/handle/1/49119
identifier_str_mv RIBEIRO, D. A. Reconhecimento facial baseado no algoritmo de aprendizado profundo YOLO. 2021. 105 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) – Universidade Federal de Lavras, Lavras, 2022.
url http://repositorio.ufla.br/jspui/handle/1/49119
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Engenharia de Sistemas e Automação
UFLA
brasil
Departamento de Engenharia
publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Engenharia de Sistemas e Automação
UFLA
brasil
Departamento de Engenharia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439180338036736