Modeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/50863 |
Resumo: | Forests provide numerous ecosystem services, such as regulation of biogeochemical cycles, pollution control, food supply and the sequestration and storage of atmospheric carbon. These services are crucial, as they act directly in the mitigation of global warming and are of strategic importance in mitigating climate change. In this context, the quantification of the carbon stock present in the most varied types of forests constitutes an important tool for monitoring this ecosystem service. The estimation of carbon stock by indirect methods makes use of modeling and simulation techniques. Historically, the modeling of forest attributes has relied on approaches based on statistical models. These approaches now share space with computational approaches of artificial intelligence/machine learning, such as artificial neural networks, support vector machines, decision trees, among others, which have been gaining ground as tools for forest data analysis, modeling, estimation of variables and production prognosis. These tools have provided gains in the quality of estimates and predictions. In this work, we analyzed the spatial distributions of the carbon stock in a tropical forest and evaluated the performance of models extracted from artificial intelligence techniques to model the carbon stock in tropical forests; in addition to the use of artificial intelligence and mixed models with the adoption of a structure in the variance and covariance matrix for volumetric estimates. The total estimated carbon stock was 267.52 Mg·ha-1 , of which 35.23% was in aboveground biomass, 63.22% in soil, and 1.54% in roots. In the soil, a spatial pattern of the carbon stock was repeated at all depths analyzed, with a reduction in the amount of carbon as the depth increased. The carbon stock of the trees followed the same spatial pattern as the soil, indicating a relationship between these variables. In the fine roots, the carbon stock decreased with increasing depth, but the spatial gradient did not follow the same pattern as the soil and trees, which indicated that the root carbon stock was most likely influenced by other factors. The techniques performed satisfactorily in modeling, with homogeneous distributions and low dispersion of residuals. The quality analysis criteria indicated the superior performance of the mixed model with a Huynh- Feldt structure of the variance and covariance matrix, which showed a decrease in mean relative error from 13.52% to 2.80%, whereas machine learning techniques had error values of 6.77% (SVM) and 5.81% (ANN). This study confirms that although fixed-effects models are widely used in the Brazilian forest sector, there are more effective methods for modeling dendrometric variables. |
id |
UFLA_c8276938eab4099fb58d052d1dcb28a7 |
---|---|
oai_identifier_str |
oai:localhost:1/50863 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Modeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniquesModelagem e análise espacial do estoque de carbono e de atributos florestais por meio de modelos de efeitos mistos e técnicas de inteligência artificialRedes neurais artificiaisMáquina de vetor de suporteModelos não-linearesModelos de efeitos mistosGeoestatísticaArtificial neural networksSupport vector machineNonlinear modelsMixed modelsGeostatisticsRecursos Florestais e Engenharia FlorestalForests provide numerous ecosystem services, such as regulation of biogeochemical cycles, pollution control, food supply and the sequestration and storage of atmospheric carbon. These services are crucial, as they act directly in the mitigation of global warming and are of strategic importance in mitigating climate change. In this context, the quantification of the carbon stock present in the most varied types of forests constitutes an important tool for monitoring this ecosystem service. The estimation of carbon stock by indirect methods makes use of modeling and simulation techniques. Historically, the modeling of forest attributes has relied on approaches based on statistical models. These approaches now share space with computational approaches of artificial intelligence/machine learning, such as artificial neural networks, support vector machines, decision trees, among others, which have been gaining ground as tools for forest data analysis, modeling, estimation of variables and production prognosis. These tools have provided gains in the quality of estimates and predictions. In this work, we analyzed the spatial distributions of the carbon stock in a tropical forest and evaluated the performance of models extracted from artificial intelligence techniques to model the carbon stock in tropical forests; in addition to the use of artificial intelligence and mixed models with the adoption of a structure in the variance and covariance matrix for volumetric estimates. The total estimated carbon stock was 267.52 Mg·ha-1 , of which 35.23% was in aboveground biomass, 63.22% in soil, and 1.54% in roots. In the soil, a spatial pattern of the carbon stock was repeated at all depths analyzed, with a reduction in the amount of carbon as the depth increased. The carbon stock of the trees followed the same spatial pattern as the soil, indicating a relationship between these variables. In the fine roots, the carbon stock decreased with increasing depth, but the spatial gradient did not follow the same pattern as the soil and trees, which indicated that the root carbon stock was most likely influenced by other factors. The techniques performed satisfactorily in modeling, with homogeneous distributions and low dispersion of residuals. The quality analysis criteria indicated the superior performance of the mixed model with a Huynh- Feldt structure of the variance and covariance matrix, which showed a decrease in mean relative error from 13.52% to 2.80%, whereas machine learning techniques had error values of 6.77% (SVM) and 5.81% (ANN). This study confirms that although fixed-effects models are widely used in the Brazilian forest sector, there are more effective methods for modeling dendrometric variables.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Florestas proveem inúmeros serviços ecossistêmicos, como regulação de ciclos biogeoquímicos, controle de poluição, fornecimento de alimentos e o sequestro e estocagem de carbono atmosférico. Esses serviços são cruciais, pois atuam diretamente na mitigação do aquecimento global, sendo de importância estratégica na amenização das mudanças climáticas. Nesse contexto, a quantificação do estoque de carbono presente nos mais variados tipos de florestas, constitui uma ferramenta importante de monitoramento desse serviço ecossistêmico. A estimativa de estoque de carbono por métodos indiretos faz uso de técnicas de modelagem e simulação. Historicamente, a modelagem de atributos florestais se apoiou em abordagens fundamentadas em modelos estatísticos. Essas abordagens dividem hoje espaço com abordagens computacionais de inteligência artificial/aprendizagem de máquina, como redes neurais artificiais, máquinas de vetores de suporte, árvores de decisão, dentre outras, as quais vêm ganhando espaço como ferramentas de análise de dados florestais, modelagem, estimativa de variáveis e prognose da produção. Essas ferramentas têm proporcionado ganhos na qualidade das estimativas e predições. Neste trabalho foram analisadas as distribuições espaciais do estoque de carbono em uma floresta tropical e avaliados os desempenhos de modelos extraídos de técnicas de inteligência artificial para modelar o estoque de carbono em florestas tropicais; além do uso de inteligência artificial e modelos mistos com adoção de estrutura na matriz de variância e covariância para estimativas volumétricas. O estoque total de carbono estimado foi de 267,52 Mg·ha-1 , sendo 35,23% na biomassa aérea, 63,22% no solo e 1,54% nas raízes. No solo, repetiu-se um padrão espacial do estoque de carbono em todas as profundidades analisadas, com redução da quantidade de carbono à medida que a profundidade aumentava. O estoque de carbono das árvores seguiu o mesmo padrão espacial do solo, indicando uma relação entre essas variáveis. Nas raízes finas, o estoque de carbono diminuiu com o aumento da profundidade, mas o gradiente espacial não seguiu o mesmo padrão do solo e das árvores, o que indicou que o estoque de carbono radicular foi influenciado por outros fatores. As técnicas funcionaram satisfatoriamente na modelagem, com distribuições homogêneas e baixa dispersão dos resíduos. Os critérios de análise de qualidade indicaram o desempenho superior do modelo misto com estrutura Huynh-Feldt da matriz de variância e covariância, que apresentou uma diminuição do erro relativo médio de 13,52% para 2,80%, enquanto as técnicas de aprendizado de máquina tiveram valores de erro de 6,77%. (SVM) e 5,81% (RNA). Este estudo confirma que, embora os modelos de efeitos fixos sejam amplamente utilizados no setor florestal brasileiro, existem métodos mais eficazes para a modelagem de variáveis dendrométricas.Universidade Federal de LavrasPrograma de Pós-Graduação em Engenharia FlorestalUFLAbrasilDepartamento de Ciências FlorestaisCalegario, NatalinoBarbosa, Gabriela ParanhosTerra, Marcela de Castro Nunes SantosHein, Paulo Ricardo GherardiMelo, Elliezer de AlmeidaRocha, Samuel José Silva Soares daDantas, Daniel2022-08-05T22:04:33Z2022-08-05T22:04:33Z2022-08-052022-07-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfDANTAS, D. Modeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniques. 2022. 110 p. Tese (Doutorado em Engenharia Florestal) - Universidade Federal de Lavras, Lavras, 2022.http://repositorio.ufla.br/jspui/handle/1/50863enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2023-05-10T19:07:56Zoai:localhost:1/50863Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-10T19:07:56Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Modeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniques Modelagem e análise espacial do estoque de carbono e de atributos florestais por meio de modelos de efeitos mistos e técnicas de inteligência artificial |
title |
Modeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniques |
spellingShingle |
Modeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniques Dantas, Daniel Redes neurais artificiais Máquina de vetor de suporte Modelos não-lineares Modelos de efeitos mistos Geoestatística Artificial neural networks Support vector machine Nonlinear models Mixed models Geostatistics Recursos Florestais e Engenharia Florestal |
title_short |
Modeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniques |
title_full |
Modeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniques |
title_fullStr |
Modeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniques |
title_full_unstemmed |
Modeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniques |
title_sort |
Modeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniques |
author |
Dantas, Daniel |
author_facet |
Dantas, Daniel |
author_role |
author |
dc.contributor.none.fl_str_mv |
Calegario, Natalino Barbosa, Gabriela Paranhos Terra, Marcela de Castro Nunes Santos Hein, Paulo Ricardo Gherardi Melo, Elliezer de Almeida Rocha, Samuel José Silva Soares da |
dc.contributor.author.fl_str_mv |
Dantas, Daniel |
dc.subject.por.fl_str_mv |
Redes neurais artificiais Máquina de vetor de suporte Modelos não-lineares Modelos de efeitos mistos Geoestatística Artificial neural networks Support vector machine Nonlinear models Mixed models Geostatistics Recursos Florestais e Engenharia Florestal |
topic |
Redes neurais artificiais Máquina de vetor de suporte Modelos não-lineares Modelos de efeitos mistos Geoestatística Artificial neural networks Support vector machine Nonlinear models Mixed models Geostatistics Recursos Florestais e Engenharia Florestal |
description |
Forests provide numerous ecosystem services, such as regulation of biogeochemical cycles, pollution control, food supply and the sequestration and storage of atmospheric carbon. These services are crucial, as they act directly in the mitigation of global warming and are of strategic importance in mitigating climate change. In this context, the quantification of the carbon stock present in the most varied types of forests constitutes an important tool for monitoring this ecosystem service. The estimation of carbon stock by indirect methods makes use of modeling and simulation techniques. Historically, the modeling of forest attributes has relied on approaches based on statistical models. These approaches now share space with computational approaches of artificial intelligence/machine learning, such as artificial neural networks, support vector machines, decision trees, among others, which have been gaining ground as tools for forest data analysis, modeling, estimation of variables and production prognosis. These tools have provided gains in the quality of estimates and predictions. In this work, we analyzed the spatial distributions of the carbon stock in a tropical forest and evaluated the performance of models extracted from artificial intelligence techniques to model the carbon stock in tropical forests; in addition to the use of artificial intelligence and mixed models with the adoption of a structure in the variance and covariance matrix for volumetric estimates. The total estimated carbon stock was 267.52 Mg·ha-1 , of which 35.23% was in aboveground biomass, 63.22% in soil, and 1.54% in roots. In the soil, a spatial pattern of the carbon stock was repeated at all depths analyzed, with a reduction in the amount of carbon as the depth increased. The carbon stock of the trees followed the same spatial pattern as the soil, indicating a relationship between these variables. In the fine roots, the carbon stock decreased with increasing depth, but the spatial gradient did not follow the same pattern as the soil and trees, which indicated that the root carbon stock was most likely influenced by other factors. The techniques performed satisfactorily in modeling, with homogeneous distributions and low dispersion of residuals. The quality analysis criteria indicated the superior performance of the mixed model with a Huynh- Feldt structure of the variance and covariance matrix, which showed a decrease in mean relative error from 13.52% to 2.80%, whereas machine learning techniques had error values of 6.77% (SVM) and 5.81% (ANN). This study confirms that although fixed-effects models are widely used in the Brazilian forest sector, there are more effective methods for modeling dendrometric variables. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08-05T22:04:33Z 2022-08-05T22:04:33Z 2022-08-05 2022-07-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
DANTAS, D. Modeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniques. 2022. 110 p. Tese (Doutorado em Engenharia Florestal) - Universidade Federal de Lavras, Lavras, 2022. http://repositorio.ufla.br/jspui/handle/1/50863 |
identifier_str_mv |
DANTAS, D. Modeling and spatial analysis of carbon stock and forest attributes using mixed-effects models and artificial intelligence techniques. 2022. 110 p. Tese (Doutorado em Engenharia Florestal) - Universidade Federal de Lavras, Lavras, 2022. |
url |
http://repositorio.ufla.br/jspui/handle/1/50863 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Engenharia Florestal UFLA brasil Departamento de Ciências Florestais |
publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Engenharia Florestal UFLA brasil Departamento de Ciências Florestais |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439167021121536 |