Bayesian algorithms for analysis of categorical ordinal data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/13937 |
Resumo: | This study describes and evaluates a package that implements extensions of the algorithm first presented by Nandram and Chen (1996), replacing Gaussian distribution (NCG) with Student’s t distribution (NCt) for Bayesian analysis of ordinal categorical data using mixed models. The algorithms described by Albert and Chib (1993) and Cowles (1996) were also implemented. Comparison was carried on using two different designs. A Steiner triple system with seven treatments used mostly to estimate fixed effects and a 10x10 square lattice designed to rank and select among random effects. Different situations for intraclass correlations were also considered. We reported the total number of iterations required for convergence diagnostics, and the mean square error (MSE) on posterior estimates of both random and fixed effects as well as posterior estimates of intraclass correlation. NCG and NCt algorithms resulted in lower MSE for both designs. This algorithm has also shown faster convergence rates. For the square lattice, NCG and NCt algorithms overestimated the intraclass correlation when the simulated value was large (0.8). But the bias on MSE relative to the other designs did not increase. A real experiment from plant breeding is given as an example of package use, an Incomplete Block Design to evaluate resistance of tomato varieties to late blight (caused by Phytophthora infestans). Gaussian distribution was the parcimonious choice for the latent trait. Algorithms are consistent with regard to the ranking of varieties. |
id |
UFLA_cfa0c6bff1452d29436c429b2615ac13 |
---|---|
oai_identifier_str |
oai:localhost:1/13937 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Bayesian algorithms for analysis of categorical ordinal dataAlgoritmos bayesianos para análise de dados categóricos ordinaisMCMCBayesthreshThreshold modelsModelos de limiarDistribuição GaussianaThis study describes and evaluates a package that implements extensions of the algorithm first presented by Nandram and Chen (1996), replacing Gaussian distribution (NCG) with Student’s t distribution (NCt) for Bayesian analysis of ordinal categorical data using mixed models. The algorithms described by Albert and Chib (1993) and Cowles (1996) were also implemented. Comparison was carried on using two different designs. A Steiner triple system with seven treatments used mostly to estimate fixed effects and a 10x10 square lattice designed to rank and select among random effects. Different situations for intraclass correlations were also considered. We reported the total number of iterations required for convergence diagnostics, and the mean square error (MSE) on posterior estimates of both random and fixed effects as well as posterior estimates of intraclass correlation. NCG and NCt algorithms resulted in lower MSE for both designs. This algorithm has also shown faster convergence rates. For the square lattice, NCG and NCt algorithms overestimated the intraclass correlation when the simulated value was large (0.8). But the bias on MSE relative to the other designs did not increase. A real experiment from plant breeding is given as an example of package use, an Incomplete Block Design to evaluate resistance of tomato varieties to late blight (caused by Phytophthora infestans). Gaussian distribution was the parcimonious choice for the latent trait. Algorithms are consistent with regard to the ranking of varieties.Universidade Federal de Lavras2016-12-282017-08-01T20:09:48Z2017-08-01T20:09:48Z2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfapplication/pdfCORREA, F. M.; SILVA, J. W.; FERREIRA, D. F.; BUENO FILHO, J. S. S. Bayesian algorithms for analysis of categorical ordinal data. Revista Brasileira de Biometria, Lavras, v. 34, n. 4, p. 597-620, dez. 2016.http://repositorio.ufla.br/jspui/handle/1/13937REVISTA BRASILEIRA DE BIOMETRIA; Vol 34 No 4 (2016); 597-6201983-0823reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttp://www.biometria.ufla.br/index.php/BBJ/article/view/251/77Attribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessCorrêa, Fábio MathiasSilva, José Waldemar daFerreira, Daniel FurtadoBueno Filho, Júlio Silvio de SousaCorrêa, Fábio MathiasSilva, José Waldemar daFerreira, Daniel FurtadoBueno Filho, Júlio Silvio de Sousa2023-05-19T18:48:09Zoai:localhost:1/13937Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-19T18:48:09Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Bayesian algorithms for analysis of categorical ordinal data Algoritmos bayesianos para análise de dados categóricos ordinais |
title |
Bayesian algorithms for analysis of categorical ordinal data |
spellingShingle |
Bayesian algorithms for analysis of categorical ordinal data Corrêa, Fábio Mathias MCMC Bayesthresh Threshold models Modelos de limiar Distribuição Gaussiana |
title_short |
Bayesian algorithms for analysis of categorical ordinal data |
title_full |
Bayesian algorithms for analysis of categorical ordinal data |
title_fullStr |
Bayesian algorithms for analysis of categorical ordinal data |
title_full_unstemmed |
Bayesian algorithms for analysis of categorical ordinal data |
title_sort |
Bayesian algorithms for analysis of categorical ordinal data |
author |
Corrêa, Fábio Mathias |
author_facet |
Corrêa, Fábio Mathias Silva, José Waldemar da Ferreira, Daniel Furtado Bueno Filho, Júlio Silvio de Sousa |
author_role |
author |
author2 |
Silva, José Waldemar da Ferreira, Daniel Furtado Bueno Filho, Júlio Silvio de Sousa |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Corrêa, Fábio Mathias Silva, José Waldemar da Ferreira, Daniel Furtado Bueno Filho, Júlio Silvio de Sousa Corrêa, Fábio Mathias Silva, José Waldemar da Ferreira, Daniel Furtado Bueno Filho, Júlio Silvio de Sousa |
dc.subject.por.fl_str_mv |
MCMC Bayesthresh Threshold models Modelos de limiar Distribuição Gaussiana |
topic |
MCMC Bayesthresh Threshold models Modelos de limiar Distribuição Gaussiana |
description |
This study describes and evaluates a package that implements extensions of the algorithm first presented by Nandram and Chen (1996), replacing Gaussian distribution (NCG) with Student’s t distribution (NCt) for Bayesian analysis of ordinal categorical data using mixed models. The algorithms described by Albert and Chib (1993) and Cowles (1996) were also implemented. Comparison was carried on using two different designs. A Steiner triple system with seven treatments used mostly to estimate fixed effects and a 10x10 square lattice designed to rank and select among random effects. Different situations for intraclass correlations were also considered. We reported the total number of iterations required for convergence diagnostics, and the mean square error (MSE) on posterior estimates of both random and fixed effects as well as posterior estimates of intraclass correlation. NCG and NCt algorithms resulted in lower MSE for both designs. This algorithm has also shown faster convergence rates. For the square lattice, NCG and NCt algorithms overestimated the intraclass correlation when the simulated value was large (0.8). But the bias on MSE relative to the other designs did not increase. A real experiment from plant breeding is given as an example of package use, an Incomplete Block Design to evaluate resistance of tomato varieties to late blight (caused by Phytophthora infestans). Gaussian distribution was the parcimonious choice for the latent trait. Algorithms are consistent with regard to the ranking of varieties. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-28 2017-08-01T20:09:48Z 2017-08-01T20:09:48Z 2017-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed Article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
CORREA, F. M.; SILVA, J. W.; FERREIRA, D. F.; BUENO FILHO, J. S. S. Bayesian algorithms for analysis of categorical ordinal data. Revista Brasileira de Biometria, Lavras, v. 34, n. 4, p. 597-620, dez. 2016. http://repositorio.ufla.br/jspui/handle/1/13937 |
identifier_str_mv |
CORREA, F. M.; SILVA, J. W.; FERREIRA, D. F.; BUENO FILHO, J. S. S. Bayesian algorithms for analysis of categorical ordinal data. Revista Brasileira de Biometria, Lavras, v. 34, n. 4, p. 597-620, dez. 2016. |
url |
http://repositorio.ufla.br/jspui/handle/1/13937 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.biometria.ufla.br/index.php/BBJ/article/view/251/77 |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras |
publisher.none.fl_str_mv |
Universidade Federal de Lavras |
dc.source.none.fl_str_mv |
REVISTA BRASILEIRA DE BIOMETRIA; Vol 34 No 4 (2016); 597-620 1983-0823 reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439211288854528 |