Bayesian algorithms for analysis of categorical ordinal data

Detalhes bibliográficos
Autor(a) principal: Corrêa, Fábio Mathias
Data de Publicação: 2016
Outros Autores: Silva, José Waldemar da, Ferreira, Daniel Furtado, Bueno Filho, Júlio Silvio de Sousa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/13937
Resumo: This study describes and evaluates a package that implements extensions of the algorithm first presented by Nandram and Chen (1996), replacing Gaussian distribution (NCG) with Student’s t distribution (NCt) for Bayesian analysis of ordinal categorical data using mixed models. The algorithms described by Albert and Chib (1993) and Cowles (1996) were also implemented. Comparison was carried on using two different designs. A Steiner triple system with seven treatments used mostly to estimate fixed effects and a 10x10 square lattice designed to rank and select among random effects. Different situations for intraclass correlations were also considered. We reported the total number of iterations required for convergence diagnostics, and the mean square error (MSE) on posterior estimates of both random and fixed effects as well as posterior estimates of intraclass correlation. NCG and NCt algorithms resulted in lower MSE for both designs. This algorithm has also shown faster convergence rates. For the square lattice, NCG and NCt algorithms overestimated the intraclass correlation when the simulated value was large (0.8). But the bias on MSE relative to the other designs did not increase. A real experiment from plant breeding is given as an example of package use, an Incomplete Block Design to evaluate resistance of tomato varieties to late blight (caused by Phytophthora infestans). Gaussian distribution was the parcimonious choice for the latent trait. Algorithms are consistent with regard to the ranking of varieties.
id UFLA_cfa0c6bff1452d29436c429b2615ac13
oai_identifier_str oai:localhost:1/13937
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Bayesian algorithms for analysis of categorical ordinal dataAlgoritmos bayesianos para análise de dados categóricos ordinaisMCMCBayesthreshThreshold modelsModelos de limiarDistribuição GaussianaThis study describes and evaluates a package that implements extensions of the algorithm first presented by Nandram and Chen (1996), replacing Gaussian distribution (NCG) with Student’s t distribution (NCt) for Bayesian analysis of ordinal categorical data using mixed models. The algorithms described by Albert and Chib (1993) and Cowles (1996) were also implemented. Comparison was carried on using two different designs. A Steiner triple system with seven treatments used mostly to estimate fixed effects and a 10x10 square lattice designed to rank and select among random effects. Different situations for intraclass correlations were also considered. We reported the total number of iterations required for convergence diagnostics, and the mean square error (MSE) on posterior estimates of both random and fixed effects as well as posterior estimates of intraclass correlation. NCG and NCt algorithms resulted in lower MSE for both designs. This algorithm has also shown faster convergence rates. For the square lattice, NCG and NCt algorithms overestimated the intraclass correlation when the simulated value was large (0.8). But the bias on MSE relative to the other designs did not increase. A real experiment from plant breeding is given as an example of package use, an Incomplete Block Design to evaluate resistance of tomato varieties to late blight (caused by Phytophthora infestans). Gaussian distribution was the parcimonious choice for the latent trait. Algorithms are consistent with regard to the ranking of varieties.Universidade Federal de Lavras2016-12-282017-08-01T20:09:48Z2017-08-01T20:09:48Z2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfapplication/pdfCORREA, F. M.; SILVA, J. W.; FERREIRA, D. F.; BUENO FILHO, J. S. S. Bayesian algorithms for analysis of categorical ordinal data. Revista Brasileira de Biometria, Lavras, v. 34, n. 4, p. 597-620, dez. 2016.http://repositorio.ufla.br/jspui/handle/1/13937REVISTA BRASILEIRA DE BIOMETRIA; Vol 34 No 4 (2016); 597-6201983-0823reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttp://www.biometria.ufla.br/index.php/BBJ/article/view/251/77Attribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessCorrêa, Fábio MathiasSilva, José Waldemar daFerreira, Daniel FurtadoBueno Filho, Júlio Silvio de SousaCorrêa, Fábio MathiasSilva, José Waldemar daFerreira, Daniel FurtadoBueno Filho, Júlio Silvio de Sousa2023-05-19T18:48:09Zoai:localhost:1/13937Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-19T18:48:09Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Bayesian algorithms for analysis of categorical ordinal data
Algoritmos bayesianos para análise de dados categóricos ordinais
title Bayesian algorithms for analysis of categorical ordinal data
spellingShingle Bayesian algorithms for analysis of categorical ordinal data
Corrêa, Fábio Mathias
MCMC
Bayesthresh
Threshold models
Modelos de limiar
Distribuição Gaussiana
title_short Bayesian algorithms for analysis of categorical ordinal data
title_full Bayesian algorithms for analysis of categorical ordinal data
title_fullStr Bayesian algorithms for analysis of categorical ordinal data
title_full_unstemmed Bayesian algorithms for analysis of categorical ordinal data
title_sort Bayesian algorithms for analysis of categorical ordinal data
author Corrêa, Fábio Mathias
author_facet Corrêa, Fábio Mathias
Silva, José Waldemar da
Ferreira, Daniel Furtado
Bueno Filho, Júlio Silvio de Sousa
author_role author
author2 Silva, José Waldemar da
Ferreira, Daniel Furtado
Bueno Filho, Júlio Silvio de Sousa
author2_role author
author
author
dc.contributor.author.fl_str_mv Corrêa, Fábio Mathias
Silva, José Waldemar da
Ferreira, Daniel Furtado
Bueno Filho, Júlio Silvio de Sousa
Corrêa, Fábio Mathias
Silva, José Waldemar da
Ferreira, Daniel Furtado
Bueno Filho, Júlio Silvio de Sousa
dc.subject.por.fl_str_mv MCMC
Bayesthresh
Threshold models
Modelos de limiar
Distribuição Gaussiana
topic MCMC
Bayesthresh
Threshold models
Modelos de limiar
Distribuição Gaussiana
description This study describes and evaluates a package that implements extensions of the algorithm first presented by Nandram and Chen (1996), replacing Gaussian distribution (NCG) with Student’s t distribution (NCt) for Bayesian analysis of ordinal categorical data using mixed models. The algorithms described by Albert and Chib (1993) and Cowles (1996) were also implemented. Comparison was carried on using two different designs. A Steiner triple system with seven treatments used mostly to estimate fixed effects and a 10x10 square lattice designed to rank and select among random effects. Different situations for intraclass correlations were also considered. We reported the total number of iterations required for convergence diagnostics, and the mean square error (MSE) on posterior estimates of both random and fixed effects as well as posterior estimates of intraclass correlation. NCG and NCt algorithms resulted in lower MSE for both designs. This algorithm has also shown faster convergence rates. For the square lattice, NCG and NCt algorithms overestimated the intraclass correlation when the simulated value was large (0.8). But the bias on MSE relative to the other designs did not increase. A real experiment from plant breeding is given as an example of package use, an Incomplete Block Design to evaluate resistance of tomato varieties to late blight (caused by Phytophthora infestans). Gaussian distribution was the parcimonious choice for the latent trait. Algorithms are consistent with regard to the ranking of varieties.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-28
2017-08-01T20:09:48Z
2017-08-01T20:09:48Z
2017-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv CORREA, F. M.; SILVA, J. W.; FERREIRA, D. F.; BUENO FILHO, J. S. S. Bayesian algorithms for analysis of categorical ordinal data. Revista Brasileira de Biometria, Lavras, v. 34, n. 4, p. 597-620, dez. 2016.
http://repositorio.ufla.br/jspui/handle/1/13937
identifier_str_mv CORREA, F. M.; SILVA, J. W.; FERREIRA, D. F.; BUENO FILHO, J. S. S. Bayesian algorithms for analysis of categorical ordinal data. Revista Brasileira de Biometria, Lavras, v. 34, n. 4, p. 597-620, dez. 2016.
url http://repositorio.ufla.br/jspui/handle/1/13937
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.biometria.ufla.br/index.php/BBJ/article/view/251/77
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
publisher.none.fl_str_mv Universidade Federal de Lavras
dc.source.none.fl_str_mv REVISTA BRASILEIRA DE BIOMETRIA; Vol 34 No 4 (2016); 597-620
1983-0823
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439211288854528