Predicting the morphological characteristics and basic density of Eucalyptus wood using the NIRS technique
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/14825 |
Resumo: | This work aimed to apply the near infrared spectroscopy technique (NIRS) for fast prediction of basic density and morphological characteristics of wood fibers in Eucalyptus clones. Six Eucalyptus clones aged three years were used, obtained from plantations in Cocais, Guanhães, Rio Doce and Santa Bárbara, in Minas Gerais state. The morphological characteristics of the fibers and basic density of the wood were determined by conventional methods and correlated with near infrared spectra using partial least square regression (PLS regression). Best calibration correlations were obtained in basic density prediction, with values 0.95 for correlation coefficient of cross validation (Rcv) and 3.4 for ratio performance deviation (RPD), in clone 57. Fiber length can be predicted by models with Rcv ranging from 0.61 to 0.89 and standard error (SECV) ranging from 0.037 to 0.079 mm. The prediction model for wood fiber width presented higher Rcv (0.82) and RPD (1.9) values in clone 1046. Best fits to estimate lumen diameter and fiber wall thickness were obtained with information from clone 1046. In some clones, the NIRS technique proved efficient to predict the anatomical properties and basic density of wood in Eucalyptus clones. |
id |
UFLA_cffdf1f4c715b4cf4d259eb9914c5fd4 |
---|---|
oai_identifier_str |
oai:localhost:1/14825 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Predicting the morphological characteristics and basic density of Eucalyptus wood using the NIRS techniquePredição das características morfológicas e da densidade básica da madeira de Eucalyptus pela técnica NIRSNear infrared spectroscopyTimberSpecific gravityAnatomical elementsHardwoodThis work aimed to apply the near infrared spectroscopy technique (NIRS) for fast prediction of basic density and morphological characteristics of wood fibers in Eucalyptus clones. Six Eucalyptus clones aged three years were used, obtained from plantations in Cocais, Guanhães, Rio Doce and Santa Bárbara, in Minas Gerais state. The morphological characteristics of the fibers and basic density of the wood were determined by conventional methods and correlated with near infrared spectra using partial least square regression (PLS regression). Best calibration correlations were obtained in basic density prediction, with values 0.95 for correlation coefficient of cross validation (Rcv) and 3.4 for ratio performance deviation (RPD), in clone 57. Fiber length can be predicted by models with Rcv ranging from 0.61 to 0.89 and standard error (SECV) ranging from 0.037 to 0.079 mm. The prediction model for wood fiber width presented higher Rcv (0.82) and RPD (1.9) values in clone 1046. Best fits to estimate lumen diameter and fiber wall thickness were obtained with information from clone 1046. In some clones, the NIRS technique proved efficient to predict the anatomical properties and basic density of wood in Eucalyptus clones.Neste trabalho, objetivou-se aplicar a técnica da espectroscopia no infravermelho próximo (NIRS) para rápida predição da densidade básica e das características morfológicas das fibras da madeira em clones de Eucalyptus. Foram utilizados seis clones de Eucalyptus, com idade de três anos, provenientes de plantios localizados nas regionais de Cocais, Guanhães, Rio Doce e Santa Bárbara, no Estado de Minas Gerais. As características morfológicas das fibras e a densidade básica da madeira foram determinadas por método convencional e correlacionadas com os espectros no infravermelho próximo por meio da regressão dos mínimos quadrados parciais (PLS regression). As melhores correlações nas calibrações foram obtidas para prever a densidade básica da madeira, com valores de coeficientes de correlação na validação cruzada (Rcv) de 0,95 e relação de desempenho do desvio (RPD) de 3,4 para o clone 57. O comprimento das fibras pode ser predito por modelos com Rcv, entre 0,61 e 0,89 e erro padrão (SECV), variando de 0,037 a 0,079 mm. O modelo para predição da largura das fibras da madeira apresentou os maiores valores de Rcv (0,82) e RPD (1,9) para o clone 1046. Os melhores ajustes para estimar o diâmetro do lume e a espessura da parede das fibras foram obtidos com as informações das amostras do clone 1046. Para alguns clones, a técnica NIRS mostrou-se eficiente para predição das propriedades anatômicas e da densidade básica da madeira dos clones de Eucalyptus.Universidade Federal de Lavras (UFLA)2015-05-192017-08-01T20:17:07Z2017-08-01T20:17:07Z2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://repositorio.ufla.br/jspui/handle/1/148252317-63420104-7760reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAengAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessViana, Lívia CássiaTrugilho, Paulo FernandoHein, Paulo Ricardo GherardiLima, José TarcísioSilva, José Reinaldo Moreira da2021-02-22T03:28:48Zoai:localhost:1/14825Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-02-22T03:28:48Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Predicting the morphological characteristics and basic density of Eucalyptus wood using the NIRS technique Predição das características morfológicas e da densidade básica da madeira de Eucalyptus pela técnica NIRS |
title |
Predicting the morphological characteristics and basic density of Eucalyptus wood using the NIRS technique |
spellingShingle |
Predicting the morphological characteristics and basic density of Eucalyptus wood using the NIRS technique Viana, Lívia Cássia Near infrared spectroscopy Timber Specific gravity Anatomical elements Hardwood |
title_short |
Predicting the morphological characteristics and basic density of Eucalyptus wood using the NIRS technique |
title_full |
Predicting the morphological characteristics and basic density of Eucalyptus wood using the NIRS technique |
title_fullStr |
Predicting the morphological characteristics and basic density of Eucalyptus wood using the NIRS technique |
title_full_unstemmed |
Predicting the morphological characteristics and basic density of Eucalyptus wood using the NIRS technique |
title_sort |
Predicting the morphological characteristics and basic density of Eucalyptus wood using the NIRS technique |
author |
Viana, Lívia Cássia |
author_facet |
Viana, Lívia Cássia Trugilho, Paulo Fernando Hein, Paulo Ricardo Gherardi Lima, José Tarcísio Silva, José Reinaldo Moreira da |
author_role |
author |
author2 |
Trugilho, Paulo Fernando Hein, Paulo Ricardo Gherardi Lima, José Tarcísio Silva, José Reinaldo Moreira da |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Viana, Lívia Cássia Trugilho, Paulo Fernando Hein, Paulo Ricardo Gherardi Lima, José Tarcísio Silva, José Reinaldo Moreira da |
dc.subject.por.fl_str_mv |
Near infrared spectroscopy Timber Specific gravity Anatomical elements Hardwood |
topic |
Near infrared spectroscopy Timber Specific gravity Anatomical elements Hardwood |
description |
This work aimed to apply the near infrared spectroscopy technique (NIRS) for fast prediction of basic density and morphological characteristics of wood fibers in Eucalyptus clones. Six Eucalyptus clones aged three years were used, obtained from plantations in Cocais, Guanhães, Rio Doce and Santa Bárbara, in Minas Gerais state. The morphological characteristics of the fibers and basic density of the wood were determined by conventional methods and correlated with near infrared spectra using partial least square regression (PLS regression). Best calibration correlations were obtained in basic density prediction, with values 0.95 for correlation coefficient of cross validation (Rcv) and 3.4 for ratio performance deviation (RPD), in clone 57. Fiber length can be predicted by models with Rcv ranging from 0.61 to 0.89 and standard error (SECV) ranging from 0.037 to 0.079 mm. The prediction model for wood fiber width presented higher Rcv (0.82) and RPD (1.9) values in clone 1046. Best fits to estimate lumen diameter and fiber wall thickness were obtained with information from clone 1046. In some clones, the NIRS technique proved efficient to predict the anatomical properties and basic density of wood in Eucalyptus clones. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-05-19 2017-08-01T20:17:07Z 2017-08-01T20:17:07Z 2017-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufla.br/jspui/handle/1/14825 |
url |
http://repositorio.ufla.br/jspui/handle/1/14825 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras (UFLA) |
publisher.none.fl_str_mv |
Universidade Federal de Lavras (UFLA) |
dc.source.none.fl_str_mv |
2317-6342 0104-7760 reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439338043867136 |