Avaliação das condições hídricas em lavoura cafeeira por meio de geoestatística e aeronave remotamente pilotada
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/46533 |
Resumo: | The Remotely Piloted Aircraft (RPA’s) has become an important technology for Precision Agriculture (PA), in the last decade they allowed the acquisition of images by remote sensors, with high spatial and temporal resolution, in addition to providing different information. Therefore, the objective of this work was to evaluate the water conditions of a coffee plantation through geostatistics and the use of high-resolution images for the calculation of vegetation indices. This study was conducted in an area of 1.2 ha, under the cultivation of coffee trees of the species Coffea arabica L., cultivar Topázio MG 1190. The study area and the 30 sampling points were georeferenced using a GNSS RTK. Data collection was carried out in two seasons, dry period (August 2020) and rainy period (January 2021). High resolution images were obtained using an RPA equipped with a multispectral sensor, for the Red, Nir, Green and Red Edge bands. The flight plan was elaborated in the eMotion software and the images obtained were processed by the Pix4D software, which created a point cloud, a digital surface model and an orthomosaic of the images. 30 undisturbed soil samples were collected, at a depth of 0-10 cm and 30 samples at a depth of 10-20 cm, which later went through the drying process in an oven at 105ºC for 24 hours to establish the soil density, gravimetric moisture and volumetric humidity. Leaves were collected at 4:30 am in georeferenced plants, where water potential was determined by using a Scholander Pump. The spatialization and interpolation of data on soil moisture and leaf water potential was carried out by geostatistical analysis, with adjustment of semivariograms and creation of maps by ordinary kriging. Through the images obtained by the ARP, vegetation indices were calculated. From the correlation analysis and linear regression, it was verified the relation of the attributes obtained in the field and the vegetation indexes. The degree of spatial dependence obtained by the geostatistics data showed a strong spatial dependence for all evaluated attributes and for both years of collection. The vegetation indices showed a significant difference when comparing the dry and rainy periods. For the analysis of correlation between field data and vegetation indices, the highest value was between the GREEN spectral band and the volumetric humidity collected at a depth of 0-10 cm for the year 2020 (51.57%). The water potential of the leaves of 2021, correlated significantly with a spectral band and six vegetation indexes, whereas the linear regression that obtained the best fit was for the water potential attribute of 2021 with the NDRE index. These results show the efficiency of geostatistical tools and RPA, for the evaluation of water conditions, and that through even more in-depth studies, they can become great allies to coffee growing. |
id |
UFLA_d062ba280ea28f5050d033be41ff64ac |
---|---|
oai_identifier_str |
oai:localhost:1/46533 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Avaliação das condições hídricas em lavoura cafeeira por meio de geoestatística e aeronave remotamente pilotadaEvaluation of water conditions in coffee laving through geostatistics and remotely piloted aircraftAgricultura de precisãoAeronaves remotamente pilotadasSensoriamento remotoIrrigação agrícolaCafé - Estresse hídricoPrecision agricultureRemotely piloted aircraftRemote sensingAgricultural irrigationCoffee - Water stressGeoestatísticaGeostatisticsEngenharia agrícolaThe Remotely Piloted Aircraft (RPA’s) has become an important technology for Precision Agriculture (PA), in the last decade they allowed the acquisition of images by remote sensors, with high spatial and temporal resolution, in addition to providing different information. Therefore, the objective of this work was to evaluate the water conditions of a coffee plantation through geostatistics and the use of high-resolution images for the calculation of vegetation indices. This study was conducted in an area of 1.2 ha, under the cultivation of coffee trees of the species Coffea arabica L., cultivar Topázio MG 1190. The study area and the 30 sampling points were georeferenced using a GNSS RTK. Data collection was carried out in two seasons, dry period (August 2020) and rainy period (January 2021). High resolution images were obtained using an RPA equipped with a multispectral sensor, for the Red, Nir, Green and Red Edge bands. The flight plan was elaborated in the eMotion software and the images obtained were processed by the Pix4D software, which created a point cloud, a digital surface model and an orthomosaic of the images. 30 undisturbed soil samples were collected, at a depth of 0-10 cm and 30 samples at a depth of 10-20 cm, which later went through the drying process in an oven at 105ºC for 24 hours to establish the soil density, gravimetric moisture and volumetric humidity. Leaves were collected at 4:30 am in georeferenced plants, where water potential was determined by using a Scholander Pump. The spatialization and interpolation of data on soil moisture and leaf water potential was carried out by geostatistical analysis, with adjustment of semivariograms and creation of maps by ordinary kriging. Through the images obtained by the ARP, vegetation indices were calculated. From the correlation analysis and linear regression, it was verified the relation of the attributes obtained in the field and the vegetation indexes. The degree of spatial dependence obtained by the geostatistics data showed a strong spatial dependence for all evaluated attributes and for both years of collection. The vegetation indices showed a significant difference when comparing the dry and rainy periods. For the analysis of correlation between field data and vegetation indices, the highest value was between the GREEN spectral band and the volumetric humidity collected at a depth of 0-10 cm for the year 2020 (51.57%). The water potential of the leaves of 2021, correlated significantly with a spectral band and six vegetation indexes, whereas the linear regression that obtained the best fit was for the water potential attribute of 2021 with the NDRE index. These results show the efficiency of geostatistical tools and RPA, for the evaluation of water conditions, and that through even more in-depth studies, they can become great allies to coffee growing.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)As Aeronaves Remotamente Pilotadas (ARP’s) vem se tornando uma tecnologia importante para a Agricultura de Precisão (AP), na última década elas permitiram a aquisição de imagens por sensores remotos, com alta resolução espacial e temporal, além de fornecer diferentes informações. Sendo assim, o objetivo deste trabalho foi avaliar as condições hídricas de uma lavoura cafeeira por meio da geoestatística e do uso de imagens de alta resolução para o cálculo de índices de vegetação. Este estudo foi conduzido em uma área de 1,2 ha, sob o cultivo de cafeeiros da espécie Coffea arabica L., cultivar Topázio MG 1190. A área de estudo e os 30 pontos de amostragem, foram georreferenciados por meio de um GNSS RTK. A coleta de dados foi realizada em duas épocas, período seco (agosto de 2020) e período chuvoso (janeiro de 2021). Foram obtidas imagens de alta resolução utilizando uma ARP equipada com sensor multiespectral, para bandas Red, Nir, Green e Red Edge. O plano de voo foi elaborado no software eMotion e as imagens obtidas foram processadas pelo software Pix4D, o qual criou-se uma nuvem de pontos, um modelo digital de superfície e um ortomosaicos das imagens. Coletou-se 30 amostras de solo indeformadas, na profundidade de 0-10 cm e 30 amostras na profundidade de 10-20 cm, que posteriormente passaram pelo processo de secagem em estufa à 105ºC por 24 horas para estabelecer a densidade de solo, umidade gravimétrica e umidade volumétrica. Foram coletadas folhas às 04:30 da manhã em plantas georreferenciadas, onde foi determinado o potencial hídrico pelo uso de uma Bomba de Scholander. A espacialização e a interpolação de dados da umidade do solo e do potencial hídrico das folhas foi realizado por análise geoestística, com ajuste de semivariogramas e criação de mapas por krigagem ordinária. Por meio das imagens obtidas pela ARP, foram calculados índices de vegetação. A partir da análise de correlação e regressão linear, verificou-se a relação dos atributos obtidos em campo e os índices de vegetação. O grau de dependência espacial obtido pelos dados de geoestatística apresentou forte dependência espacial para todos os atributos avaliados e para ambos os anos de coleta. Os índices de vegetação apresentaram uma diferença significativa quando comparados os períodos seco e chuvoso. Para a análise de correlação entre os dados de campo e os índices de vegetação, o maior valor de foi entre a banda espectral GREEN e a umidade volumétrica coletada na profundidade de 0-10 cm para ano de 2020 (51,57%). O potencial hídrico das folhas de 2021, correlacionou significativamente com uma banda espectral e seis índices de vegetação, já a regressão linear que obteve o melhor ajuste foi para o atributo potencial hídrico de 2021 com o índice NDRE. Estes resultados mostram a eficiência das ferramentas geoestatística e ARP, para avaliação das condições hídricas, e que por meio de estudos ainda mais aprofundados, podem se tonar grandes aliadas à cafeicultura.Universidade Federal de LavrasPrograma de Pós-Graduação em Engenharia AgrícolaUFLAbrasilDepartamento de EngenhariaFerraz, Gabriel Araújo e SilvaFigueiredo, Vanessa CastroBarros, Murilo Machado deMachado, Marley LamounierFigueiredo, Vanessa CastroSantos, Sthéfany Airane dos2021-06-17T17:58:13Z2021-06-17T17:58:13Z2021-06-172021-03-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSANTOS, S. A. dos. Avaliação das condições hídricas em lavoura cafeeira por meio de geoestatística e aeronave remotamente pilotada. 2021. 74 p. Dissertação (Mestrado em Engenharia Agrícola) – Universidade Federal de Lavras, Lavras, 2021.http://repositorio.ufla.br/jspui/handle/1/46533porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2023-05-02T14:14:39Zoai:localhost:1/46533Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-02T14:14:39Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Avaliação das condições hídricas em lavoura cafeeira por meio de geoestatística e aeronave remotamente pilotada Evaluation of water conditions in coffee laving through geostatistics and remotely piloted aircraft |
title |
Avaliação das condições hídricas em lavoura cafeeira por meio de geoestatística e aeronave remotamente pilotada |
spellingShingle |
Avaliação das condições hídricas em lavoura cafeeira por meio de geoestatística e aeronave remotamente pilotada Santos, Sthéfany Airane dos Agricultura de precisão Aeronaves remotamente pilotadas Sensoriamento remoto Irrigação agrícola Café - Estresse hídrico Precision agriculture Remotely piloted aircraft Remote sensing Agricultural irrigation Coffee - Water stress Geoestatística Geostatistics Engenharia agrícola |
title_short |
Avaliação das condições hídricas em lavoura cafeeira por meio de geoestatística e aeronave remotamente pilotada |
title_full |
Avaliação das condições hídricas em lavoura cafeeira por meio de geoestatística e aeronave remotamente pilotada |
title_fullStr |
Avaliação das condições hídricas em lavoura cafeeira por meio de geoestatística e aeronave remotamente pilotada |
title_full_unstemmed |
Avaliação das condições hídricas em lavoura cafeeira por meio de geoestatística e aeronave remotamente pilotada |
title_sort |
Avaliação das condições hídricas em lavoura cafeeira por meio de geoestatística e aeronave remotamente pilotada |
author |
Santos, Sthéfany Airane dos |
author_facet |
Santos, Sthéfany Airane dos |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ferraz, Gabriel Araújo e Silva Figueiredo, Vanessa Castro Barros, Murilo Machado de Machado, Marley Lamounier Figueiredo, Vanessa Castro |
dc.contributor.author.fl_str_mv |
Santos, Sthéfany Airane dos |
dc.subject.por.fl_str_mv |
Agricultura de precisão Aeronaves remotamente pilotadas Sensoriamento remoto Irrigação agrícola Café - Estresse hídrico Precision agriculture Remotely piloted aircraft Remote sensing Agricultural irrigation Coffee - Water stress Geoestatística Geostatistics Engenharia agrícola |
topic |
Agricultura de precisão Aeronaves remotamente pilotadas Sensoriamento remoto Irrigação agrícola Café - Estresse hídrico Precision agriculture Remotely piloted aircraft Remote sensing Agricultural irrigation Coffee - Water stress Geoestatística Geostatistics Engenharia agrícola |
description |
The Remotely Piloted Aircraft (RPA’s) has become an important technology for Precision Agriculture (PA), in the last decade they allowed the acquisition of images by remote sensors, with high spatial and temporal resolution, in addition to providing different information. Therefore, the objective of this work was to evaluate the water conditions of a coffee plantation through geostatistics and the use of high-resolution images for the calculation of vegetation indices. This study was conducted in an area of 1.2 ha, under the cultivation of coffee trees of the species Coffea arabica L., cultivar Topázio MG 1190. The study area and the 30 sampling points were georeferenced using a GNSS RTK. Data collection was carried out in two seasons, dry period (August 2020) and rainy period (January 2021). High resolution images were obtained using an RPA equipped with a multispectral sensor, for the Red, Nir, Green and Red Edge bands. The flight plan was elaborated in the eMotion software and the images obtained were processed by the Pix4D software, which created a point cloud, a digital surface model and an orthomosaic of the images. 30 undisturbed soil samples were collected, at a depth of 0-10 cm and 30 samples at a depth of 10-20 cm, which later went through the drying process in an oven at 105ºC for 24 hours to establish the soil density, gravimetric moisture and volumetric humidity. Leaves were collected at 4:30 am in georeferenced plants, where water potential was determined by using a Scholander Pump. The spatialization and interpolation of data on soil moisture and leaf water potential was carried out by geostatistical analysis, with adjustment of semivariograms and creation of maps by ordinary kriging. Through the images obtained by the ARP, vegetation indices were calculated. From the correlation analysis and linear regression, it was verified the relation of the attributes obtained in the field and the vegetation indexes. The degree of spatial dependence obtained by the geostatistics data showed a strong spatial dependence for all evaluated attributes and for both years of collection. The vegetation indices showed a significant difference when comparing the dry and rainy periods. For the analysis of correlation between field data and vegetation indices, the highest value was between the GREEN spectral band and the volumetric humidity collected at a depth of 0-10 cm for the year 2020 (51.57%). The water potential of the leaves of 2021, correlated significantly with a spectral band and six vegetation indexes, whereas the linear regression that obtained the best fit was for the water potential attribute of 2021 with the NDRE index. These results show the efficiency of geostatistical tools and RPA, for the evaluation of water conditions, and that through even more in-depth studies, they can become great allies to coffee growing. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-17T17:58:13Z 2021-06-17T17:58:13Z 2021-06-17 2021-03-31 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
SANTOS, S. A. dos. Avaliação das condições hídricas em lavoura cafeeira por meio de geoestatística e aeronave remotamente pilotada. 2021. 74 p. Dissertação (Mestrado em Engenharia Agrícola) – Universidade Federal de Lavras, Lavras, 2021. http://repositorio.ufla.br/jspui/handle/1/46533 |
identifier_str_mv |
SANTOS, S. A. dos. Avaliação das condições hídricas em lavoura cafeeira por meio de geoestatística e aeronave remotamente pilotada. 2021. 74 p. Dissertação (Mestrado em Engenharia Agrícola) – Universidade Federal de Lavras, Lavras, 2021. |
url |
http://repositorio.ufla.br/jspui/handle/1/46533 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Engenharia Agrícola UFLA brasil Departamento de Engenharia |
publisher.none.fl_str_mv |
Universidade Federal de Lavras Programa de Pós-Graduação em Engenharia Agrícola UFLA brasil Departamento de Engenharia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439123491586048 |