Detecção de mudanças em áreas de cerrado usando inteligência artificial

Detalhes bibliográficos
Autor(a) principal: Pereira, Eveline Aparecida
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/45434
Resumo: Brazil contains large tracts of native vegetation, including large areas of tropical Brazilian Savannas biome, which has been threatened due to the expansion of anthropic activities. In the last years, Remote Sensing (RS) data combined with Artificial Intelligence (AI) have been used to identify the dynamic of the Land use/Land Cover Change (LULCC) of these areas, producing LULCC maps with high accuracy. However, the choice of the AI algorithm and the selection data attributes for the learning process are crucial steps, especially in environments influenced by seasonal variations. Considering these circumstances, the study focus in the following questions: a) what type of attribute (spatial or spectral) or their combination could better differentiate the seasonal changes produced by weather conditions, from atrophic changes in RS images; b) what is the effect of the training sample size into different AI classifiers to produce change maps. Thus, spatial and spectral information were extract for objects generated from Landsat NDVI images in a Tropical Savanna area, acquired at different seasonal periods. The Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Random Forest (RF) algorithms were compared. The MLP produced the most accurate change map, with 75,16% of global accuracy and greater robustness in relation to the variation of the sample intensity. In order to evaluate the generalization capacity of the algorithm, the trained MLP was used to detect changes in contiguous Landsat tiles. The results showed a decrease to 56% of global accuracy, which indicates a limitation of the method. Therefore, the spatial attributes were capable of accurately differentiate deforestation and fires sites, from seasonal changes.
id UFLA_d4de916ee0a956e2233e86fb2acd3dda
oai_identifier_str oai:localhost:1/45434
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Detecção de mudanças em áreas de cerrado usando inteligência artificialChange detection in savanna areas using aritifial intelligenceAprendizado de máquinasSensoriamento remotoGeographic Object-based Image Analysis (GEOBIA)Machine learningRemote sensingCerradoRecursos Florestais e Engenharia FlorestalBrazil contains large tracts of native vegetation, including large areas of tropical Brazilian Savannas biome, which has been threatened due to the expansion of anthropic activities. In the last years, Remote Sensing (RS) data combined with Artificial Intelligence (AI) have been used to identify the dynamic of the Land use/Land Cover Change (LULCC) of these areas, producing LULCC maps with high accuracy. However, the choice of the AI algorithm and the selection data attributes for the learning process are crucial steps, especially in environments influenced by seasonal variations. Considering these circumstances, the study focus in the following questions: a) what type of attribute (spatial or spectral) or their combination could better differentiate the seasonal changes produced by weather conditions, from atrophic changes in RS images; b) what is the effect of the training sample size into different AI classifiers to produce change maps. Thus, spatial and spectral information were extract for objects generated from Landsat NDVI images in a Tropical Savanna area, acquired at different seasonal periods. The Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Random Forest (RF) algorithms were compared. The MLP produced the most accurate change map, with 75,16% of global accuracy and greater robustness in relation to the variation of the sample intensity. In order to evaluate the generalization capacity of the algorithm, the trained MLP was used to detect changes in contiguous Landsat tiles. The results showed a decrease to 56% of global accuracy, which indicates a limitation of the method. Therefore, the spatial attributes were capable of accurately differentiate deforestation and fires sites, from seasonal changes.O bioma cerrado está sob constante pressão antrópica e poucos esforços tem sido feitos no âmbito do monitoramento dessas mudanças no uso do solo. O sensoriamento remoto aliado a inteligência artificial fornecem ferramentas eficientes e rápidas para detectar mudanças. As questões científicas abordadas neste estudo foram: qual tipo de atributo (espacial ou espectral) e ou a combinação deles melhor diferenciam as mudanças sazonais dos processos de antropização em imagens NDVI-bitemporais? E qual o efeito da intensidade amostral do monitoramento no desempenho dos classificadores utilizando inteligência artificial? O estudo explorou ambas informações, espaciais e espectrais, derivadas de imagens NDVI bi-temporais Landsat na análise do monitoramento, empregando classificadores de alto desempenho: Neural Network Multilayer Perceptron (MLP), Support Vector Machine (SVM) e Random Forest (RF). Foi analisado a intensidade amostral e a robustez dos algoritmos em cada um dos conjuntos de atributos da classificação, a rede MLP obteve a melhor generalização com 75,16% de acurácia global e maior robustez em relação a variação da intensidade amostral. O algoritmo Multilayer Perceptron (MLP) treinado foi aplicado numa área contígua, detectando as mudanças com a precisão de 56% indicando algumas limitações do método. Portanto, os atributos espaciais, derivados de imagens bi-temporais NDVI são capazes de detectar com precisão os desmatamentos e queimadas ocorridos no cerrado, sendo insensíveis as mudanças causadas pelo período sazonal do ambiente.Universidade Federal de LavrasPrograma de Pós-Graduação em Engenharia FlorestalUFLAbrasilDepartamento de Ciências FlorestaisCarvalho, Luís Marcelo Tavares deAcerbi Júnior, Fausto WeimarFerreira, Danton DiegoAcerbi Júnior, Fausto WeimarPereira, Eveline Aparecida2020-11-10T16:49:17Z2020-11-10T16:49:17Z2020-11-102020-02-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfPEREIRA, E. A. Detecção de mudanças em áreas de cerrado usando inteligência artificial. 2020. 45 p. Dissertação (Mestrado em Engenharia Florestal) – Universidade Federal de Lavras, Lavras, 2020.http://repositorio.ufla.br/jspui/handle/1/45434porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2023-05-11T12:13:24Zoai:localhost:1/45434Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-11T12:13:24Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Detecção de mudanças em áreas de cerrado usando inteligência artificial
Change detection in savanna areas using aritifial intelligence
title Detecção de mudanças em áreas de cerrado usando inteligência artificial
spellingShingle Detecção de mudanças em áreas de cerrado usando inteligência artificial
Pereira, Eveline Aparecida
Aprendizado de máquinas
Sensoriamento remoto
Geographic Object-based Image Analysis (GEOBIA)
Machine learning
Remote sensing
Cerrado
Recursos Florestais e Engenharia Florestal
title_short Detecção de mudanças em áreas de cerrado usando inteligência artificial
title_full Detecção de mudanças em áreas de cerrado usando inteligência artificial
title_fullStr Detecção de mudanças em áreas de cerrado usando inteligência artificial
title_full_unstemmed Detecção de mudanças em áreas de cerrado usando inteligência artificial
title_sort Detecção de mudanças em áreas de cerrado usando inteligência artificial
author Pereira, Eveline Aparecida
author_facet Pereira, Eveline Aparecida
author_role author
dc.contributor.none.fl_str_mv Carvalho, Luís Marcelo Tavares de
Acerbi Júnior, Fausto Weimar
Ferreira, Danton Diego
Acerbi Júnior, Fausto Weimar
dc.contributor.author.fl_str_mv Pereira, Eveline Aparecida
dc.subject.por.fl_str_mv Aprendizado de máquinas
Sensoriamento remoto
Geographic Object-based Image Analysis (GEOBIA)
Machine learning
Remote sensing
Cerrado
Recursos Florestais e Engenharia Florestal
topic Aprendizado de máquinas
Sensoriamento remoto
Geographic Object-based Image Analysis (GEOBIA)
Machine learning
Remote sensing
Cerrado
Recursos Florestais e Engenharia Florestal
description Brazil contains large tracts of native vegetation, including large areas of tropical Brazilian Savannas biome, which has been threatened due to the expansion of anthropic activities. In the last years, Remote Sensing (RS) data combined with Artificial Intelligence (AI) have been used to identify the dynamic of the Land use/Land Cover Change (LULCC) of these areas, producing LULCC maps with high accuracy. However, the choice of the AI algorithm and the selection data attributes for the learning process are crucial steps, especially in environments influenced by seasonal variations. Considering these circumstances, the study focus in the following questions: a) what type of attribute (spatial or spectral) or their combination could better differentiate the seasonal changes produced by weather conditions, from atrophic changes in RS images; b) what is the effect of the training sample size into different AI classifiers to produce change maps. Thus, spatial and spectral information were extract for objects generated from Landsat NDVI images in a Tropical Savanna area, acquired at different seasonal periods. The Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Random Forest (RF) algorithms were compared. The MLP produced the most accurate change map, with 75,16% of global accuracy and greater robustness in relation to the variation of the sample intensity. In order to evaluate the generalization capacity of the algorithm, the trained MLP was used to detect changes in contiguous Landsat tiles. The results showed a decrease to 56% of global accuracy, which indicates a limitation of the method. Therefore, the spatial attributes were capable of accurately differentiate deforestation and fires sites, from seasonal changes.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-10T16:49:17Z
2020-11-10T16:49:17Z
2020-11-10
2020-02-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv PEREIRA, E. A. Detecção de mudanças em áreas de cerrado usando inteligência artificial. 2020. 45 p. Dissertação (Mestrado em Engenharia Florestal) – Universidade Federal de Lavras, Lavras, 2020.
http://repositorio.ufla.br/jspui/handle/1/45434
identifier_str_mv PEREIRA, E. A. Detecção de mudanças em áreas de cerrado usando inteligência artificial. 2020. 45 p. Dissertação (Mestrado em Engenharia Florestal) – Universidade Federal de Lavras, Lavras, 2020.
url http://repositorio.ufla.br/jspui/handle/1/45434
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Engenharia Florestal
UFLA
brasil
Departamento de Ciências Florestais
publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Engenharia Florestal
UFLA
brasil
Departamento de Ciências Florestais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439188251639808