Change detection in forests and savannas using statistical analysis based on geographical objects
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/30960 |
Resumo: | The aim of this work was to assess techniques of land cover change detection in areas of Brazilian Forest and Savanna, using Landsat 5/TM images, and two iterative statistical methodologies based on geographical objects. The sensitivity of the methodologies was assessed in relation to the heterogeneity of the input data, the use of reflectance data and vegetation indices, and the use of different levels of confidence. The periods analyzed were from 2000 to 2006, and from 2006 to 2010. After the segmentation of images, the descriptive statistics average and standard deviation of each object were extracted. The determination of change objects was realized in an iterative way based on the Mahalanobis Distance and the chi-square distribution. The results were validated with an early visual detection and analyzed according to Receiver Operating Characteristic (ROC) Curve. Significant gains were obtained by using vegetation masks and bands 3 and 4 for both areas tested with 94,67% and 95,02% of the objects correctly detected as changes, respectively for the areas of Forest and Savanna. The use of the NDVI and different images were not satisfactory in this study. |
id |
UFLA_e21fc8e8421aa754d9655cc5b004ae1a |
---|---|
oai_identifier_str |
oai:localhost:1/30960 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Change detection in forests and savannas using statistical analysis based on geographical objectsDetecção de mudanças em florestas e savanas utilizando análise estatística baseada em objetos geográficosBrazilian savannaAmazon forestRemote senseSegmentation of imagesDistance of MahalanobisSavana brasileiraFloresta AmazônicaSensoriamento remotoSegmentação de imagensDistância de MahalanobisThe aim of this work was to assess techniques of land cover change detection in areas of Brazilian Forest and Savanna, using Landsat 5/TM images, and two iterative statistical methodologies based on geographical objects. The sensitivity of the methodologies was assessed in relation to the heterogeneity of the input data, the use of reflectance data and vegetation indices, and the use of different levels of confidence. The periods analyzed were from 2000 to 2006, and from 2006 to 2010. After the segmentation of images, the descriptive statistics average and standard deviation of each object were extracted. The determination of change objects was realized in an iterative way based on the Mahalanobis Distance and the chi-square distribution. The results were validated with an early visual detection and analyzed according to Receiver Operating Characteristic (ROC) Curve. Significant gains were obtained by using vegetation masks and bands 3 and 4 for both areas tested with 94,67% and 95,02% of the objects correctly detected as changes, respectively for the areas of Forest and Savanna. The use of the NDVI and different images were not satisfactory in this study.O objetivo deste trabalho foi avaliar a detecção de mudanças sobre a cobertura do solo em áreas de Floresta e Savana Brasileira, utilizando imagens do satélite Landsat 5/TM e duas metodologias estatísticas iterativas baseadas em objetos geográficos. Foi avaliada a sensibilidade das metodologias em relação à heterogeneidade dos dados de entrada, à utilização de dados de reflectância e índices de vegetação e à utilização de diferentes níveis de confiança. Os períodos analisados compreenderam os anos 2000 a 2006 e 2006 a 2010. Após a segmentação das imagens foram extraídas as grandezas estatísticas descritivas média e desvio padrão de cada objeto. A determinação dos objetos de mudança foi realizada de forma iterativa com base na Distância de Mahalanobis e na distribuição qui-quadrado. Os resultados foram validados com uma prévia detecção visual e analisados de acordo com a curva ROC. Foram obtidos ganhos significativos na utilização de máscara e das bandas 3 e 4 para ambas as áreas testadas com 94,67% e 95,02% dos objetos corretamente detectados como mudança, respectivamente para as áreas de Floresta e Savana. O uso do NDVI e de imagens diferentes se mostraram insatisfatórios para a detecção de mudanças nas áreas testadas.Universidade Federal do Paraná2018-10-08T19:14:15Z2018-10-08T19:14:15Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfLEITE, L. R.; CARVALHO, L. M. T. de; SILVA, F. M. da. Change detection in forests and savannas using statistical analysis based on geographical objects. Boletim de Ciências Geodésicas, Curitiba, v. 23, n. 2, p. 284 - 295, Apr./June 2017.http://repositorio.ufla.br/jspui/handle/1/30960Boletim de Ciências Geodésicasreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessLeite, Lucilia RezendeCarvalho, Luis Marcelo Tavares deSilva, Fortunato Menezes daeng2023-05-09T17:31:48Zoai:localhost:1/30960Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-09T17:31:48Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Change detection in forests and savannas using statistical analysis based on geographical objects Detecção de mudanças em florestas e savanas utilizando análise estatística baseada em objetos geográficos |
title |
Change detection in forests and savannas using statistical analysis based on geographical objects |
spellingShingle |
Change detection in forests and savannas using statistical analysis based on geographical objects Leite, Lucilia Rezende Brazilian savanna Amazon forest Remote sense Segmentation of images Distance of Mahalanobis Savana brasileira Floresta Amazônica Sensoriamento remoto Segmentação de imagens Distância de Mahalanobis |
title_short |
Change detection in forests and savannas using statistical analysis based on geographical objects |
title_full |
Change detection in forests and savannas using statistical analysis based on geographical objects |
title_fullStr |
Change detection in forests and savannas using statistical analysis based on geographical objects |
title_full_unstemmed |
Change detection in forests and savannas using statistical analysis based on geographical objects |
title_sort |
Change detection in forests and savannas using statistical analysis based on geographical objects |
author |
Leite, Lucilia Rezende |
author_facet |
Leite, Lucilia Rezende Carvalho, Luis Marcelo Tavares de Silva, Fortunato Menezes da |
author_role |
author |
author2 |
Carvalho, Luis Marcelo Tavares de Silva, Fortunato Menezes da |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Leite, Lucilia Rezende Carvalho, Luis Marcelo Tavares de Silva, Fortunato Menezes da |
dc.subject.por.fl_str_mv |
Brazilian savanna Amazon forest Remote sense Segmentation of images Distance of Mahalanobis Savana brasileira Floresta Amazônica Sensoriamento remoto Segmentação de imagens Distância de Mahalanobis |
topic |
Brazilian savanna Amazon forest Remote sense Segmentation of images Distance of Mahalanobis Savana brasileira Floresta Amazônica Sensoriamento remoto Segmentação de imagens Distância de Mahalanobis |
description |
The aim of this work was to assess techniques of land cover change detection in areas of Brazilian Forest and Savanna, using Landsat 5/TM images, and two iterative statistical methodologies based on geographical objects. The sensitivity of the methodologies was assessed in relation to the heterogeneity of the input data, the use of reflectance data and vegetation indices, and the use of different levels of confidence. The periods analyzed were from 2000 to 2006, and from 2006 to 2010. After the segmentation of images, the descriptive statistics average and standard deviation of each object were extracted. The determination of change objects was realized in an iterative way based on the Mahalanobis Distance and the chi-square distribution. The results were validated with an early visual detection and analyzed according to Receiver Operating Characteristic (ROC) Curve. Significant gains were obtained by using vegetation masks and bands 3 and 4 for both areas tested with 94,67% and 95,02% of the objects correctly detected as changes, respectively for the areas of Forest and Savanna. The use of the NDVI and different images were not satisfactory in this study. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2018-10-08T19:14:15Z 2018-10-08T19:14:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
LEITE, L. R.; CARVALHO, L. M. T. de; SILVA, F. M. da. Change detection in forests and savannas using statistical analysis based on geographical objects. Boletim de Ciências Geodésicas, Curitiba, v. 23, n. 2, p. 284 - 295, Apr./June 2017. http://repositorio.ufla.br/jspui/handle/1/30960 |
identifier_str_mv |
LEITE, L. R.; CARVALHO, L. M. T. de; SILVA, F. M. da. Change detection in forests and savannas using statistical analysis based on geographical objects. Boletim de Ciências Geodésicas, Curitiba, v. 23, n. 2, p. 284 - 295, Apr./June 2017. |
url |
http://repositorio.ufla.br/jspui/handle/1/30960 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Paraná |
publisher.none.fl_str_mv |
Universidade Federal do Paraná |
dc.source.none.fl_str_mv |
Boletim de Ciências Geodésicas reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439175200014336 |