Use of classifier to determine coffee harvest time by detachment force
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/33694 |
Resumo: | Coffee quality is an essential aspect to increase its commercial value and for the Brazilian coffee business to remain prominent in the world market. Fruit maturity stage at harvest is an important factor that affects the quality and commercial value of the product. Therefore, the objective of this study was to develop a classifier using neural networks to distinguish green coffee fruits from mature coffee fruits, based on the detachment force. Fruit detachment force and the percentage value of the maturity stage were measured during a 75-day harvest window. Collections were carried out biweekly, resulting in five different moments within the harvest period. A classifier was developed using neural networks to distinguish green fruits from mature fruits in the harvest period analyzed. The results show that, in the first half of June, the supervised classified had the highest success percentage in differentiating green fruits from mature fruits, and this period was considered as ideal for a selective harvest under these experimental conditions. |
id |
UFLA_e7c7d67575947a3149e70e3995fca74f |
---|---|
oai_identifier_str |
oai:localhost:1/33694 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Use of classifier to determine coffee harvest time by detachment forceUso de classificador para determinação do momento de colheita do café pela força de desprendimentoCoffee cultivationCoffee - HarvestSupervised classifiersCoffee - MaturationCafeiculturaCafé - ColheitaClassificadores supervisionadosCafé - MaturaçãoCoffee quality is an essential aspect to increase its commercial value and for the Brazilian coffee business to remain prominent in the world market. Fruit maturity stage at harvest is an important factor that affects the quality and commercial value of the product. Therefore, the objective of this study was to develop a classifier using neural networks to distinguish green coffee fruits from mature coffee fruits, based on the detachment force. Fruit detachment force and the percentage value of the maturity stage were measured during a 75-day harvest window. Collections were carried out biweekly, resulting in five different moments within the harvest period. A classifier was developed using neural networks to distinguish green fruits from mature fruits in the harvest period analyzed. The results show that, in the first half of June, the supervised classified had the highest success percentage in differentiating green fruits from mature fruits, and this period was considered as ideal for a selective harvest under these experimental conditions.A qualidade do café é um aspecto imprescindível para o aumento do seu valor comercial e para que a cafeicultura brasileira continue com destaque no mercado mundial. O estádio de maturação dos frutos no momento da colheita é um dos fatores importantes que interfere na qualidade e no valor comercial do produto. Com a realização deste trabalho, objetivou-se desenvolver um classificador para determinação do momento de colheita do café pela força de desprendimento. A força de desprendimento dos frutos e o valor percentual do estádio de maturação foram mensurados durante a janela de colheita de 75 dias. As coletas foram realizadas quinzenalmente, resultando em cinco momentos distintos no período de colheita. Um classificador foi desenvolvido a partir de redes neurais para distinguir frutos verdes e cerejas nos momentos de colheita analisados. Os resultados demostraram que a primeira quinzena de junho foi o momento em que o classificador supervisionado apresentou a maior porcentagem de acerto na distinção de frutos verdes e cerejas, sendo este, o momento adequado para realização de uma colheita seletiva para as condições deste experimento.Departamento de Engenharia Agrícola - UFCG2019-04-23T13:04:45Z2019-04-23T13:04:45Z2018-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfBARROS, M. M. de et al. Use of classifier to determine coffee harvest time by detachment force. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 22, n. 5, p. 366-370, May 2018.http://repositorio.ufla.br/jspui/handle/1/33694Revista Brasileira de Engenharia Agrícola e Ambientalreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessBarros, Murilo M. deSilva, Fábio M. daCosta, Anderson G.Ferraz, Gabriel A. e S.Silva, Flávio C. daeng2019-04-23T13:05:29Zoai:localhost:1/33694Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2019-04-23T13:05:29Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Use of classifier to determine coffee harvest time by detachment force Uso de classificador para determinação do momento de colheita do café pela força de desprendimento |
title |
Use of classifier to determine coffee harvest time by detachment force |
spellingShingle |
Use of classifier to determine coffee harvest time by detachment force Barros, Murilo M. de Coffee cultivation Coffee - Harvest Supervised classifiers Coffee - Maturation Cafeicultura Café - Colheita Classificadores supervisionados Café - Maturação |
title_short |
Use of classifier to determine coffee harvest time by detachment force |
title_full |
Use of classifier to determine coffee harvest time by detachment force |
title_fullStr |
Use of classifier to determine coffee harvest time by detachment force |
title_full_unstemmed |
Use of classifier to determine coffee harvest time by detachment force |
title_sort |
Use of classifier to determine coffee harvest time by detachment force |
author |
Barros, Murilo M. de |
author_facet |
Barros, Murilo M. de Silva, Fábio M. da Costa, Anderson G. Ferraz, Gabriel A. e S. Silva, Flávio C. da |
author_role |
author |
author2 |
Silva, Fábio M. da Costa, Anderson G. Ferraz, Gabriel A. e S. Silva, Flávio C. da |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Barros, Murilo M. de Silva, Fábio M. da Costa, Anderson G. Ferraz, Gabriel A. e S. Silva, Flávio C. da |
dc.subject.por.fl_str_mv |
Coffee cultivation Coffee - Harvest Supervised classifiers Coffee - Maturation Cafeicultura Café - Colheita Classificadores supervisionados Café - Maturação |
topic |
Coffee cultivation Coffee - Harvest Supervised classifiers Coffee - Maturation Cafeicultura Café - Colheita Classificadores supervisionados Café - Maturação |
description |
Coffee quality is an essential aspect to increase its commercial value and for the Brazilian coffee business to remain prominent in the world market. Fruit maturity stage at harvest is an important factor that affects the quality and commercial value of the product. Therefore, the objective of this study was to develop a classifier using neural networks to distinguish green coffee fruits from mature coffee fruits, based on the detachment force. Fruit detachment force and the percentage value of the maturity stage were measured during a 75-day harvest window. Collections were carried out biweekly, resulting in five different moments within the harvest period. A classifier was developed using neural networks to distinguish green fruits from mature fruits in the harvest period analyzed. The results show that, in the first half of June, the supervised classified had the highest success percentage in differentiating green fruits from mature fruits, and this period was considered as ideal for a selective harvest under these experimental conditions. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 2019-04-23T13:04:45Z 2019-04-23T13:04:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
BARROS, M. M. de et al. Use of classifier to determine coffee harvest time by detachment force. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 22, n. 5, p. 366-370, May 2018. http://repositorio.ufla.br/jspui/handle/1/33694 |
identifier_str_mv |
BARROS, M. M. de et al. Use of classifier to determine coffee harvest time by detachment force. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 22, n. 5, p. 366-370, May 2018. |
url |
http://repositorio.ufla.br/jspui/handle/1/33694 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Departamento de Engenharia Agrícola - UFCG |
publisher.none.fl_str_mv |
Departamento de Engenharia Agrícola - UFCG |
dc.source.none.fl_str_mv |
Revista Brasileira de Engenharia Agrícola e Ambiental reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439133931208704 |