Sistema neural antifurto veicular

Detalhes bibliográficos
Autor(a) principal: Ramos, Celso de Ávila
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/29916
Resumo: Currently, the concern for the safety of properties has constantly been among the population, especially in countries where the theft rates are high. Faced with a worrying scenario, issues about developing technologies and solutions that are able to reduce theft rates must be addressed, seeking to improve existing techniques and / or develop new ones. This study aims to verify the viability of using artificial neural networks for the detection of unauthorized driving of vehicles and implement an automated real-time system, based on an artificial neural network trained to classify the driver as to how they drive the vehicle, based on data obtained from the automobile itself. Therefore, we used the OBD-II device commonly used to obtain data from vehicle sensors. Variables like throttle position, acceleration in x, acceleration in y and acceleration in z were used as inputs to a neural network to classify the driver either as authorized or not authorized to drive the vehicle. An Android app that sends data from the OBD-II to a Web Service Python was developed. This Web Service has a scan function that uses a neural network trained to classify the driver and return an answer to the user. The training algorithm used was backpropagation, obtaining satisfactory results during the tests, with 88% of the trained neural network hits. The test of the efficiency ratio was measured by the Kappa coefficient, with a result as excellent for this index. The Neural Vehicle Anti-Theft System is a tool that can help owners monitor the driving of their car. It is hoped, too, that the system can help other areas of interest, as authorities and insurance companies. The use of Artificial Neural Networks to classify the driver was proved to be feasible and effective for this purpose. It is also important to note that the OBD-II device can be used for other purposes that go beyond the diagnosis of vehicle components for its proper maintenance. The developed system proved that it is possible to assess the behavior of the driver by means of data supplied by the vehicle they conduct.
id UFLA_ea2ad874cd9c21a4f7b3b37b2b7651e7
oai_identifier_str oai:localhost:1/29916
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Sistema neural antifurto veicularNeural system anti theft vehicleRedes neurais artificiaisAntifurto veicularClassificação de condutoresSegurança veicularArtificial neural networksVehicular anti-theftConductors classificationVehicular safetyCiência da ComputaçãoCurrently, the concern for the safety of properties has constantly been among the population, especially in countries where the theft rates are high. Faced with a worrying scenario, issues about developing technologies and solutions that are able to reduce theft rates must be addressed, seeking to improve existing techniques and / or develop new ones. This study aims to verify the viability of using artificial neural networks for the detection of unauthorized driving of vehicles and implement an automated real-time system, based on an artificial neural network trained to classify the driver as to how they drive the vehicle, based on data obtained from the automobile itself. Therefore, we used the OBD-II device commonly used to obtain data from vehicle sensors. Variables like throttle position, acceleration in x, acceleration in y and acceleration in z were used as inputs to a neural network to classify the driver either as authorized or not authorized to drive the vehicle. An Android app that sends data from the OBD-II to a Web Service Python was developed. This Web Service has a scan function that uses a neural network trained to classify the driver and return an answer to the user. The training algorithm used was backpropagation, obtaining satisfactory results during the tests, with 88% of the trained neural network hits. The test of the efficiency ratio was measured by the Kappa coefficient, with a result as excellent for this index. The Neural Vehicle Anti-Theft System is a tool that can help owners monitor the driving of their car. It is hoped, too, that the system can help other areas of interest, as authorities and insurance companies. The use of Artificial Neural Networks to classify the driver was proved to be feasible and effective for this purpose. It is also important to note that the OBD-II device can be used for other purposes that go beyond the diagnosis of vehicle components for its proper maintenance. The developed system proved that it is possible to assess the behavior of the driver by means of data supplied by the vehicle they conduct.Atualmente, a preocupação com a segurança de bens tem sido uma constante na população, principalmente em países onde os índices de furtos são elevados. Diante de um cenário preocupante, questões sobre como desenvolver tecnologias e soluções que consigam reduzir os índices de furtos devem ser abordadas, buscando aprimorar técnicas existentes e/ou elaborar novas. Este trabalho tem por objetivo, verificar a viabilidade do uso de redes neurais artificiais para a detecção de condução desautorizada de veículos e implementar um sistema automático em tempo real, baseado em uma rede neural artificial treinada para a classificação do condutor, mediante sua forma de conduzir o veículo, a partir de dados obtidos do próprio automóvel. Para tanto, foi utilizado o dispositivo OBD-II, comumente empregado para obter dados dos sensores do veículo. As variáveis de posição do acelerador, aceleração em x, aceleração em y e aceleração em z foram utilizadas como entradas de uma rede neural para a classificação do condutor como sendo autorizado ou não autorizado a conduzir o veículo. Foi desenvolvido um aplicativo Android que envia os dados obtidos do OBD-II para um Web Service Python. Este Web Service possui uma função de verificação que utiliza uma rede neural treinada para classificar o condutor e retornar uma resposta para o usuário. O treinamento utilizou algoritmo backpropagation, obtendo resultados satisfatórios durante os testes, com 88% de acertos da rede neural treinada. O índice de eficiência dos testes foi medido por meio do coeficiente Kappa, apresentando um resultado considerado excelente para este índice. O Sistema Neural Antifurto Veicular é uma ferramenta que pode auxiliar proprietários a monitorar a condução de seu automóvel. Espera-se, também, que o sistema possa auxiliar outras áreas de interesse como autoridades e empresas de seguro. O uso de Redes Neurais Artificiais para a classificação do condutor mostrou-se viável e eficaz para este fim. Também é importante ressaltar que o dispositivo OBD-II pode ser empregado para outras finalidades que vão além do diagnóstico dos componentes do veículo para sua correta manutenção. O sistema desenvolvido comprovou que é possível avaliar o comportamento do motorista por meio de dados fornecidos pelo próprio veículo que este conduz.Universidade Federal de LavrasPrograma de Pós-Graduação em Ciência da ComputaçãoUFLAbrasilDepartamento de Ciência da ComputaçãoLacerda, Wilian SoaresCastro, Cristiano Leite deFerreira, DantonRamos, Celso de Ávila2018-08-08T11:41:39Z2018-08-08T11:41:39Z2018-08-082016-04-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfRAMOS, C. de A. Sistema neural antifurto veicular. 2016. 81 p. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal de Lavras, Lavras, 2016.http://repositorio.ufla.br/jspui/handle/1/29916porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2023-04-13T17:16:56Zoai:localhost:1/29916Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-04-13T17:16:56Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Sistema neural antifurto veicular
Neural system anti theft vehicle
title Sistema neural antifurto veicular
spellingShingle Sistema neural antifurto veicular
Ramos, Celso de Ávila
Redes neurais artificiais
Antifurto veicular
Classificação de condutores
Segurança veicular
Artificial neural networks
Vehicular anti-theft
Conductors classification
Vehicular safety
Ciência da Computação
title_short Sistema neural antifurto veicular
title_full Sistema neural antifurto veicular
title_fullStr Sistema neural antifurto veicular
title_full_unstemmed Sistema neural antifurto veicular
title_sort Sistema neural antifurto veicular
author Ramos, Celso de Ávila
author_facet Ramos, Celso de Ávila
author_role author
dc.contributor.none.fl_str_mv Lacerda, Wilian Soares
Castro, Cristiano Leite de
Ferreira, Danton
dc.contributor.author.fl_str_mv Ramos, Celso de Ávila
dc.subject.por.fl_str_mv Redes neurais artificiais
Antifurto veicular
Classificação de condutores
Segurança veicular
Artificial neural networks
Vehicular anti-theft
Conductors classification
Vehicular safety
Ciência da Computação
topic Redes neurais artificiais
Antifurto veicular
Classificação de condutores
Segurança veicular
Artificial neural networks
Vehicular anti-theft
Conductors classification
Vehicular safety
Ciência da Computação
description Currently, the concern for the safety of properties has constantly been among the population, especially in countries where the theft rates are high. Faced with a worrying scenario, issues about developing technologies and solutions that are able to reduce theft rates must be addressed, seeking to improve existing techniques and / or develop new ones. This study aims to verify the viability of using artificial neural networks for the detection of unauthorized driving of vehicles and implement an automated real-time system, based on an artificial neural network trained to classify the driver as to how they drive the vehicle, based on data obtained from the automobile itself. Therefore, we used the OBD-II device commonly used to obtain data from vehicle sensors. Variables like throttle position, acceleration in x, acceleration in y and acceleration in z were used as inputs to a neural network to classify the driver either as authorized or not authorized to drive the vehicle. An Android app that sends data from the OBD-II to a Web Service Python was developed. This Web Service has a scan function that uses a neural network trained to classify the driver and return an answer to the user. The training algorithm used was backpropagation, obtaining satisfactory results during the tests, with 88% of the trained neural network hits. The test of the efficiency ratio was measured by the Kappa coefficient, with a result as excellent for this index. The Neural Vehicle Anti-Theft System is a tool that can help owners monitor the driving of their car. It is hoped, too, that the system can help other areas of interest, as authorities and insurance companies. The use of Artificial Neural Networks to classify the driver was proved to be feasible and effective for this purpose. It is also important to note that the OBD-II device can be used for other purposes that go beyond the diagnosis of vehicle components for its proper maintenance. The developed system proved that it is possible to assess the behavior of the driver by means of data supplied by the vehicle they conduct.
publishDate 2016
dc.date.none.fl_str_mv 2016-04-20
2018-08-08T11:41:39Z
2018-08-08T11:41:39Z
2018-08-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv RAMOS, C. de A. Sistema neural antifurto veicular. 2016. 81 p. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal de Lavras, Lavras, 2016.
http://repositorio.ufla.br/jspui/handle/1/29916
identifier_str_mv RAMOS, C. de A. Sistema neural antifurto veicular. 2016. 81 p. Dissertação (Mestrado em Ciência da Computação)-Universidade Federal de Lavras, Lavras, 2016.
url http://repositorio.ufla.br/jspui/handle/1/29916
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Ciência da Computação
UFLA
brasil
Departamento de Ciência da Computação
publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Ciência da Computação
UFLA
brasil
Departamento de Ciência da Computação
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1807835219915440128