Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiro
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/40048 |
Resumo: | Multispectral remote sensing is a reliable and feasible methodology to assist farmers in decision making for best management practices, ensuring a more efficient and sustainable agricultural production. The objective of this study was to identify and map stress on coffee caused by biotic and abiotic variables through vegetation indices derived from Landsat-5 Thematic Mapper (TM) multispectral images. The sampling grid was composed of 67 points, with each sampling point consisting of five plants. The analyzes of the incidence of brown eye spot and infestation of the leaf miner in the leaves, pH, organic matter, soil texture and nutrients leaf contents were performed at each of the sampling points and correlated with 16 vegetation indices obtained from images at the time of analysis. The vegetation indices presented a spatial distribution similar to the agronomic variables in the crop. There was a positive correlation of the indices with infestation of the leaf miner, silt and clay content in the soil and concentration of Mg, Cu, B and Mn in the leaves, and negative with the incidence of brown eye spot, pH and soil sand content. Based on these results, it was possible to map and identify the changes in the spectral reflectance of the coffee trees, caused by these agronomic variables. |
id |
UFLA_ea5557bd5e6dca03084f278fe4b1f4d9 |
---|---|
oai_identifier_str |
oai:localhost:1/40048 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiroMultispectral remote sensing in the identification and mapping of biotic and abiotic coffee tree variablesAgricultura de precisãoVariáveis agronômicasÍndices de vegetaçãoCafeiculturaPrecision agricultureAgronomic variablesVegetation indicesCoffea arabica LMultispectral remote sensing is a reliable and feasible methodology to assist farmers in decision making for best management practices, ensuring a more efficient and sustainable agricultural production. The objective of this study was to identify and map stress on coffee caused by biotic and abiotic variables through vegetation indices derived from Landsat-5 Thematic Mapper (TM) multispectral images. The sampling grid was composed of 67 points, with each sampling point consisting of five plants. The analyzes of the incidence of brown eye spot and infestation of the leaf miner in the leaves, pH, organic matter, soil texture and nutrients leaf contents were performed at each of the sampling points and correlated with 16 vegetation indices obtained from images at the time of analysis. The vegetation indices presented a spatial distribution similar to the agronomic variables in the crop. There was a positive correlation of the indices with infestation of the leaf miner, silt and clay content in the soil and concentration of Mg, Cu, B and Mn in the leaves, and negative with the incidence of brown eye spot, pH and soil sand content. Based on these results, it was possible to map and identify the changes in the spectral reflectance of the coffee trees, caused by these agronomic variables.O sensoriamento remoto multiespectral apresenta-se como metodologia confiável e viável para auxiliar o produtor na decisão para melhores práticas de manejo, garantindo uma produção agrícola mais eficiente e sustentável. Objetivou-se, com este trabalho, identificar e mapear o estresse em lavoura cafeeira, causado por variáveis bióticas e abióticas, por meio de índices de vegetação derivados de imagens multiespectrais Landsat-5 Thematic Mapper (TM). A malha amostral foi composta por 67 pontos, sendo cada ponto amostral constituído por cinco plantas. As análises de incidência de cercosporiose e de infestação do bicho-mineiro, nas folhas, de pH, matéria orgânica e textura do solo e teores foliares de nutrientes foram realizadas em cada um dos pontos amostrais e correlacionadas com 16 índices de vegetação obtidos de imagens referentes à época das análises. Os índices de vegetação apresentaram distribuição espacial semelhante à distribuição espacial das variáveis agronômicas, na lavoura. Houve correlação positiva dos índices com a infestação do bicho-mineiro e com os teores de silte e argila no solo e concentrações de Mg, Cu, B e Mn nas folhas, e negativa, com a incidência de cercosporiose e com pH e teor de areia do solo. Com base nesses resultados, foi possível mapear e identificar as alterações na reflectância espectral dos cafeeiros, causadas por essas variáveis agronômicas.Universidade Federal de Viçosa2020-04-14T18:31:24Z2020-04-14T18:31:24Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfMARIN, D. B. et al. Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiro. Revista Ceres, Viçosa, MG, v. 66, n. 2, p. 142-153, mar./abr. 2019.http://repositorio.ufla.br/jspui/handle/1/40048Revista Ceresreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessMarin, Diego BedinAlves, Marcelo de CarvalhoPozza, Edson AmpélioGandia, Rômulo MarçalCortez, Matheus Luiz JorgeMattioli, Matheus Campospor2023-05-26T19:51:40Zoai:localhost:1/40048Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-26T19:51:40Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiro Multispectral remote sensing in the identification and mapping of biotic and abiotic coffee tree variables |
title |
Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiro |
spellingShingle |
Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiro Marin, Diego Bedin Agricultura de precisão Variáveis agronômicas Índices de vegetação Cafeicultura Precision agriculture Agronomic variables Vegetation indices Coffea arabica L |
title_short |
Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiro |
title_full |
Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiro |
title_fullStr |
Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiro |
title_full_unstemmed |
Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiro |
title_sort |
Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiro |
author |
Marin, Diego Bedin |
author_facet |
Marin, Diego Bedin Alves, Marcelo de Carvalho Pozza, Edson Ampélio Gandia, Rômulo Marçal Cortez, Matheus Luiz Jorge Mattioli, Matheus Campos |
author_role |
author |
author2 |
Alves, Marcelo de Carvalho Pozza, Edson Ampélio Gandia, Rômulo Marçal Cortez, Matheus Luiz Jorge Mattioli, Matheus Campos |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Marin, Diego Bedin Alves, Marcelo de Carvalho Pozza, Edson Ampélio Gandia, Rômulo Marçal Cortez, Matheus Luiz Jorge Mattioli, Matheus Campos |
dc.subject.por.fl_str_mv |
Agricultura de precisão Variáveis agronômicas Índices de vegetação Cafeicultura Precision agriculture Agronomic variables Vegetation indices Coffea arabica L |
topic |
Agricultura de precisão Variáveis agronômicas Índices de vegetação Cafeicultura Precision agriculture Agronomic variables Vegetation indices Coffea arabica L |
description |
Multispectral remote sensing is a reliable and feasible methodology to assist farmers in decision making for best management practices, ensuring a more efficient and sustainable agricultural production. The objective of this study was to identify and map stress on coffee caused by biotic and abiotic variables through vegetation indices derived from Landsat-5 Thematic Mapper (TM) multispectral images. The sampling grid was composed of 67 points, with each sampling point consisting of five plants. The analyzes of the incidence of brown eye spot and infestation of the leaf miner in the leaves, pH, organic matter, soil texture and nutrients leaf contents were performed at each of the sampling points and correlated with 16 vegetation indices obtained from images at the time of analysis. The vegetation indices presented a spatial distribution similar to the agronomic variables in the crop. There was a positive correlation of the indices with infestation of the leaf miner, silt and clay content in the soil and concentration of Mg, Cu, B and Mn in the leaves, and negative with the incidence of brown eye spot, pH and soil sand content. Based on these results, it was possible to map and identify the changes in the spectral reflectance of the coffee trees, caused by these agronomic variables. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 2020-04-14T18:31:24Z 2020-04-14T18:31:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MARIN, D. B. et al. Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiro. Revista Ceres, Viçosa, MG, v. 66, n. 2, p. 142-153, mar./abr. 2019. http://repositorio.ufla.br/jspui/handle/1/40048 |
identifier_str_mv |
MARIN, D. B. et al. Sensoriamento remoto multiespectral na identificação e mapeamento das variáveis bióticas e abióticas do cafeeiro. Revista Ceres, Viçosa, MG, v. 66, n. 2, p. 142-153, mar./abr. 2019. |
url |
http://repositorio.ufla.br/jspui/handle/1/40048 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
Revista Ceres reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439277977239552 |