A modified MGGP algorithm for structure selection of NARMAX models

Detalhes bibliográficos
Autor(a) principal: Castro, Henrique Carvalho de
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/46427
Resumo: In the area of system identification, the input-output Nonlinear Autoregressive Moving Average with Exogenous Variables (NARMAX) models are of great interest. The most challenging task faced when working with such models is to select the appropriate model structure that best represent the underlying system in the data. This structure selection is usually made via Error Reduction Ratio (ERR)-based algorithms. These algorithms suffer from the curse of dimensionality when high degree of nonlinearity and long-term dependencies are required. Further, some nonlinearities require specific functions or terms in the model structure to be reproduced, i.e. the hysteretic behavior. The ERR-based algorithm may leave these fundamental terms out of the selected structure. Alternatively, Evolutionary Algorithms (EAs) can be used to perform the structure selection process. They are methods that evolves a population of individuals through generations (or epochs) via selection, mutation, and reproduction phenomena. In the case of system identification, each individual would be a candidate model. This dissertation proposes the hybridization of an EA called Multi-Gene Genetic Programming (MGGP) with an ERR-based algorithm to perform the identification process even for those cases in which specific functions are required. In total, four experiments are performed. The first two experiments analyse noise level and soft input problems using stochastic test systems to generate data. As result we verify that the increment of equation noise level does not interfere in the structure selection outcome and that the hybridization MGGP/ERR is beneficial in comparison with the standalone MGGP for the soft input problem. The MGGP/ERR yields more parsimonious models that perform better in free- run simulation. The third experiment is the identification of a hydraulic pumping system benchmark. It is shown that the MGGP/ERR is able to explore a wide range in search space for which the traditional ERR-based algorithm would require a very high computational power. And finally, the last experiment is the identification of a piezoelectric actuator, which is characterized by the hysteretic behavior. It is included specific functions in the search space so that the MGGP/ERR is able to identify hysteresis. A novel and easy-to-use toolbox based on Python was developed and is available under GPL.
id UFLA_f09fe5c213a51776fe58512bd1552e51
oai_identifier_str oai:localhost:1/46427
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling A modified MGGP algorithm for structure selection of NARMAX modelsUm algoritmo MGGP modificado para seleção de estrutura em modelos NARMAXNonlinear system identificationMulti-gene genetic programmingError reduction ratioNARMAX modelsIdentificação de sistemas não linearesProgramação genética multi-geneTaxa de redução de erroModelos NARMAXEngenharia de SoftwareIn the area of system identification, the input-output Nonlinear Autoregressive Moving Average with Exogenous Variables (NARMAX) models are of great interest. The most challenging task faced when working with such models is to select the appropriate model structure that best represent the underlying system in the data. This structure selection is usually made via Error Reduction Ratio (ERR)-based algorithms. These algorithms suffer from the curse of dimensionality when high degree of nonlinearity and long-term dependencies are required. Further, some nonlinearities require specific functions or terms in the model structure to be reproduced, i.e. the hysteretic behavior. The ERR-based algorithm may leave these fundamental terms out of the selected structure. Alternatively, Evolutionary Algorithms (EAs) can be used to perform the structure selection process. They are methods that evolves a population of individuals through generations (or epochs) via selection, mutation, and reproduction phenomena. In the case of system identification, each individual would be a candidate model. This dissertation proposes the hybridization of an EA called Multi-Gene Genetic Programming (MGGP) with an ERR-based algorithm to perform the identification process even for those cases in which specific functions are required. In total, four experiments are performed. The first two experiments analyse noise level and soft input problems using stochastic test systems to generate data. As result we verify that the increment of equation noise level does not interfere in the structure selection outcome and that the hybridization MGGP/ERR is beneficial in comparison with the standalone MGGP for the soft input problem. The MGGP/ERR yields more parsimonious models that perform better in free- run simulation. The third experiment is the identification of a hydraulic pumping system benchmark. It is shown that the MGGP/ERR is able to explore a wide range in search space for which the traditional ERR-based algorithm would require a very high computational power. And finally, the last experiment is the identification of a piezoelectric actuator, which is characterized by the hysteretic behavior. It is included specific functions in the search space so that the MGGP/ERR is able to identify hysteresis. A novel and easy-to-use toolbox based on Python was developed and is available under GPL.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Na área de identificação de sistemas, os modelos de entrada-saída NARMAX (Nonlinear Autoregressive Moving Average with Exogenous Variables) são de grande interesse. A tarefa mais desafiadora quando se trabalha com esses modelos é a seleção da estrutura adequada do modelo que melhor represente o sistema subjacente aos dados. Normalmente, essa seleção de estrutura é feita por meio de algoritmos baseados no critério ERR (Error Reduction Ratio). Esses algoritmos sofrem com a maldição da dimensionalidade quando são requeridos alto grau de não linearidade e dependências de longo prazo. Ademais, algumas não linearidades necessitam de funções ou termos específicos na estrutura do modelo para serem reproduzidas, i.e., o comportamento de histerese. O algoritmo baseado em ERR pode deixar esses termos fundamentais fora da estrutura selecionada. Alternativamente, Algoritmos Evolucionários (AE) podem ser usados para realizar o processo de seleção de estrutura. Eles são métodos que evoluem uma população de indivíduos através das gerações por meio dos fenômenos de seleção, mutação e reprodução. No caso da identificação de sistemas, cada indivíduo seria um candidato a modelo. Essa dissertação propõe a hibridização de um EA chamado MGGP (Multi-Gene Genetic Programming) com um algoritmo baseado em ERR para desempenhar o processo de identificação mesmo naqueles casos em que funções específicas são requeridas. No total, são realizados quatro experimentos. Os dois primeiros analisam os problemas de nível de ruído e entrada suave utilizando sistemas de teste estocásticos para gerar os dados. Como resultado, verificamos que o incremento do nível de ruído na equação não interfere no resultado da seleção de estrutura e que a hibridização MGGP/ERR é benéfica em comparação com o MGGP autônomo para o problema de entrada suave. O MGGP/ERR produz modelos mais parcimoniosos que apresentam melhor desempenho em simulação livre. O terceiro experimento é a identificação de um benchmark de sistema de bombeamento hidráulico. É mostrado que o MGGP/ERR é capaz de explorar um amplo espaço de busca para o qual um método tradicional baseado em ERR requeriria um poder computacional muito alto. E finalmente, o último experimento é a identificação de um atuador piezoelétrico, que se caracteriza pelo comportamento de histerese. São incluídas funções específicas no espaço de busca de tal forma que o MGGP/ERR seja capaz de identificar a histerese. Uma toolbox nova e fácil de usar baseada em Python foi desenvolvida e está disponível sob Licença Pública Geral.Universidade Federal de LavrasPrograma de Pós-Graduação em Engenharia de Sistemas e AutomaçãoUFLAbrasilDepartamento de EngenhariaBarbosa, Bruno Henrique GroennerBarbosa, Bruno Henrique GroennerNepomuceno, Erivelton GeraldoFerreira, Danton DiegoCastro, Henrique Carvalho de2021-05-31T13:10:50Z2021-05-31T13:10:50Z2021-05-312021-03-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfCASTRO, H. C. de. A modified MGGP algorithm for structure selection of NARMAX models. 2021. 98 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) – Universidade Federal de Lavras, Lavras, 2021.http://repositorio.ufla.br/jspui/handle/1/46427enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLA2023-05-02T12:40:22Zoai:localhost:1/46427Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-02T12:40:22Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv A modified MGGP algorithm for structure selection of NARMAX models
Um algoritmo MGGP modificado para seleção de estrutura em modelos NARMAX
title A modified MGGP algorithm for structure selection of NARMAX models
spellingShingle A modified MGGP algorithm for structure selection of NARMAX models
Castro, Henrique Carvalho de
Nonlinear system identification
Multi-gene genetic programming
Error reduction ratio
NARMAX models
Identificação de sistemas não lineares
Programação genética multi-gene
Taxa de redução de erro
Modelos NARMAX
Engenharia de Software
title_short A modified MGGP algorithm for structure selection of NARMAX models
title_full A modified MGGP algorithm for structure selection of NARMAX models
title_fullStr A modified MGGP algorithm for structure selection of NARMAX models
title_full_unstemmed A modified MGGP algorithm for structure selection of NARMAX models
title_sort A modified MGGP algorithm for structure selection of NARMAX models
author Castro, Henrique Carvalho de
author_facet Castro, Henrique Carvalho de
author_role author
dc.contributor.none.fl_str_mv Barbosa, Bruno Henrique Groenner
Barbosa, Bruno Henrique Groenner
Nepomuceno, Erivelton Geraldo
Ferreira, Danton Diego
dc.contributor.author.fl_str_mv Castro, Henrique Carvalho de
dc.subject.por.fl_str_mv Nonlinear system identification
Multi-gene genetic programming
Error reduction ratio
NARMAX models
Identificação de sistemas não lineares
Programação genética multi-gene
Taxa de redução de erro
Modelos NARMAX
Engenharia de Software
topic Nonlinear system identification
Multi-gene genetic programming
Error reduction ratio
NARMAX models
Identificação de sistemas não lineares
Programação genética multi-gene
Taxa de redução de erro
Modelos NARMAX
Engenharia de Software
description In the area of system identification, the input-output Nonlinear Autoregressive Moving Average with Exogenous Variables (NARMAX) models are of great interest. The most challenging task faced when working with such models is to select the appropriate model structure that best represent the underlying system in the data. This structure selection is usually made via Error Reduction Ratio (ERR)-based algorithms. These algorithms suffer from the curse of dimensionality when high degree of nonlinearity and long-term dependencies are required. Further, some nonlinearities require specific functions or terms in the model structure to be reproduced, i.e. the hysteretic behavior. The ERR-based algorithm may leave these fundamental terms out of the selected structure. Alternatively, Evolutionary Algorithms (EAs) can be used to perform the structure selection process. They are methods that evolves a population of individuals through generations (or epochs) via selection, mutation, and reproduction phenomena. In the case of system identification, each individual would be a candidate model. This dissertation proposes the hybridization of an EA called Multi-Gene Genetic Programming (MGGP) with an ERR-based algorithm to perform the identification process even for those cases in which specific functions are required. In total, four experiments are performed. The first two experiments analyse noise level and soft input problems using stochastic test systems to generate data. As result we verify that the increment of equation noise level does not interfere in the structure selection outcome and that the hybridization MGGP/ERR is beneficial in comparison with the standalone MGGP for the soft input problem. The MGGP/ERR yields more parsimonious models that perform better in free- run simulation. The third experiment is the identification of a hydraulic pumping system benchmark. It is shown that the MGGP/ERR is able to explore a wide range in search space for which the traditional ERR-based algorithm would require a very high computational power. And finally, the last experiment is the identification of a piezoelectric actuator, which is characterized by the hysteretic behavior. It is included specific functions in the search space so that the MGGP/ERR is able to identify hysteresis. A novel and easy-to-use toolbox based on Python was developed and is available under GPL.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-31T13:10:50Z
2021-05-31T13:10:50Z
2021-05-31
2021-03-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv CASTRO, H. C. de. A modified MGGP algorithm for structure selection of NARMAX models. 2021. 98 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) – Universidade Federal de Lavras, Lavras, 2021.
http://repositorio.ufla.br/jspui/handle/1/46427
identifier_str_mv CASTRO, H. C. de. A modified MGGP algorithm for structure selection of NARMAX models. 2021. 98 p. Dissertação (Mestrado em Engenharia de Sistemas e Automação) – Universidade Federal de Lavras, Lavras, 2021.
url http://repositorio.ufla.br/jspui/handle/1/46427
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Engenharia de Sistemas e Automação
UFLA
brasil
Departamento de Engenharia
publisher.none.fl_str_mv Universidade Federal de Lavras
Programa de Pós-Graduação em Engenharia de Sistemas e Automação
UFLA
brasil
Departamento de Engenharia
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1807835169212596224