Using the Box-Cox family of distributions to model censored data

Detalhes bibliográficos
Autor(a) principal: Nakamura, Luiz R.
Data de Publicação: 2022
Outros Autores: Ramires, Thiago G., Righetto, Ana J., Silva, Viviane C., Konrath, Andréa C.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/56666
Resumo: The study of the expected time until an event of interest is a recurring topic in different fields, suchas medical, economics and engineering. The Kaplan-Meier method and the Cox proportional hazardsmodel are the most used methodologies to deal with such kind of data. Nevertheless, in recent years,the generalised additive models for location, scale and shape (GAMLSS) models – which can be seen asdistributional regression and/or beyond the mean regression models – have been standing out as a resultof its highly flexibility and ability to fit complex data. GAMLSS are a class of semi-parametric regres-sion models, in the sense that they assume a distribution for the response variable, and any and all of itsparameters can be modelled as linear and/or non-linear functions of a set of explanatory variables. In thispaper, we present the Box-Cox family of distributions under the distributional regression framework asa solid alternative to model censored data.
id UFLA_f39381f6d866dfb50ba363e728ba9571
oai_identifier_str oai:localhost:1/56666
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Using the Box-Cox family of distributions to model censored dataGAMLSSKidney diseaseRenal insufficiencyGeneralized additive model for location, scale and shape (GAMLSS)The study of the expected time until an event of interest is a recurring topic in different fields, suchas medical, economics and engineering. The Kaplan-Meier method and the Cox proportional hazardsmodel are the most used methodologies to deal with such kind of data. Nevertheless, in recent years,the generalised additive models for location, scale and shape (GAMLSS) models – which can be seen asdistributional regression and/or beyond the mean regression models – have been standing out as a resultof its highly flexibility and ability to fit complex data. GAMLSS are a class of semi-parametric regres-sion models, in the sense that they assume a distribution for the response variable, and any and all of itsparameters can be modelled as linear and/or non-linear functions of a set of explanatory variables. In thispaper, we present the Box-Cox family of distributions under the distributional regression framework asa solid alternative to model censored data.Brazilian Region of the International Biometric Society (RBras)2023-04-18T14:08:24Z2023-04-18T14:08:24Z2022-12-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfNAKAMURA, L. R. et al. Using the Box-Cox family of distributions to model censored data. Brazilian Journal of Biometrics, [S.l.], v. 40, p. 407-414, 2022. DOI: 10.28951/bjb.v40i4.625.http://repositorio.ufla.br/jspui/handle/1/56666Brazilian Journal of Biometrics (BJB)reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessNakamura, Luiz R.Ramires, Thiago G.Righetto, Ana J.Silva, Viviane C.Konrath, Andréa C.eng2023-05-19T18:53:22Zoai:localhost:1/56666Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-19T18:53:22Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Using the Box-Cox family of distributions to model censored data
title Using the Box-Cox family of distributions to model censored data
spellingShingle Using the Box-Cox family of distributions to model censored data
Nakamura, Luiz R.
GAMLSS
Kidney disease
Renal insufficiency
Generalized additive model for location, scale and shape (GAMLSS)
title_short Using the Box-Cox family of distributions to model censored data
title_full Using the Box-Cox family of distributions to model censored data
title_fullStr Using the Box-Cox family of distributions to model censored data
title_full_unstemmed Using the Box-Cox family of distributions to model censored data
title_sort Using the Box-Cox family of distributions to model censored data
author Nakamura, Luiz R.
author_facet Nakamura, Luiz R.
Ramires, Thiago G.
Righetto, Ana J.
Silva, Viviane C.
Konrath, Andréa C.
author_role author
author2 Ramires, Thiago G.
Righetto, Ana J.
Silva, Viviane C.
Konrath, Andréa C.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Nakamura, Luiz R.
Ramires, Thiago G.
Righetto, Ana J.
Silva, Viviane C.
Konrath, Andréa C.
dc.subject.por.fl_str_mv GAMLSS
Kidney disease
Renal insufficiency
Generalized additive model for location, scale and shape (GAMLSS)
topic GAMLSS
Kidney disease
Renal insufficiency
Generalized additive model for location, scale and shape (GAMLSS)
description The study of the expected time until an event of interest is a recurring topic in different fields, suchas medical, economics and engineering. The Kaplan-Meier method and the Cox proportional hazardsmodel are the most used methodologies to deal with such kind of data. Nevertheless, in recent years,the generalised additive models for location, scale and shape (GAMLSS) models – which can be seen asdistributional regression and/or beyond the mean regression models – have been standing out as a resultof its highly flexibility and ability to fit complex data. GAMLSS are a class of semi-parametric regres-sion models, in the sense that they assume a distribution for the response variable, and any and all of itsparameters can be modelled as linear and/or non-linear functions of a set of explanatory variables. In thispaper, we present the Box-Cox family of distributions under the distributional regression framework asa solid alternative to model censored data.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-31
2023-04-18T14:08:24Z
2023-04-18T14:08:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv NAKAMURA, L. R. et al. Using the Box-Cox family of distributions to model censored data. Brazilian Journal of Biometrics, [S.l.], v. 40, p. 407-414, 2022. DOI: 10.28951/bjb.v40i4.625.
http://repositorio.ufla.br/jspui/handle/1/56666
identifier_str_mv NAKAMURA, L. R. et al. Using the Box-Cox family of distributions to model censored data. Brazilian Journal of Biometrics, [S.l.], v. 40, p. 407-414, 2022. DOI: 10.28951/bjb.v40i4.625.
url http://repositorio.ufla.br/jspui/handle/1/56666
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Brazilian Region of the International Biometric Society (RBras)
publisher.none.fl_str_mv Brazilian Region of the International Biometric Society (RBras)
dc.source.none.fl_str_mv Brazilian Journal of Biometrics (BJB)
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439333757288448