Artificial neural networks and regression analysis for volume estimation in native species
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/49340 |
Resumo: | Modeling is an important tool to estimate forest production in planted areas. Although this issue has been studied worldwide, knowledge regarding volume measurement in specific locations such as Northeast Brazil is still scarce. The present study aimed to evaluated the effectiveness of artificial neural networks (ANNs) and regression analysis in estimating the timber volume of homogeneous stands of Anadantera macrocarpa, Genipa americana, and Mimosa casalpinifolia, in order to better predict the growth and production of these species. Both methods were suitable for estimating the individual volume in 7-year-old stands with different spacing. The Spurr regression model showed better statistical results and dispersion of unbiased errors for Anadantera macrocarpa and Genipa americana, whereas the Shumacher-Hall model provided more accurate volume estimates for Mimosa caesalpinifolia. The ANNs calibrated with two neurons in the middle layer exhibited the best fit for all three species. As such, artificial neural networks can be recommended to estimate the individual volumes of the species analyzed in the study area. |
id |
UFLA_f409317c7b41e55cae87c8ebdac1488f |
---|---|
oai_identifier_str |
oai:localhost:1/49340 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Artificial neural networks and regression analysis for volume estimation in native speciesRedes neurais artificiais e análise de regressão para estimativa de volume de espécies nativasNative forestProduction volumePrediction modelsArtificial neural networks (ANNs)Florestas nativasVolume de produçãoModelos de prediçãoRedes neurais artificiais (RNAs)Modeling is an important tool to estimate forest production in planted areas. Although this issue has been studied worldwide, knowledge regarding volume measurement in specific locations such as Northeast Brazil is still scarce. The present study aimed to evaluated the effectiveness of artificial neural networks (ANNs) and regression analysis in estimating the timber volume of homogeneous stands of Anadantera macrocarpa, Genipa americana, and Mimosa casalpinifolia, in order to better predict the growth and production of these species. Both methods were suitable for estimating the individual volume in 7-year-old stands with different spacing. The Spurr regression model showed better statistical results and dispersion of unbiased errors for Anadantera macrocarpa and Genipa americana, whereas the Shumacher-Hall model provided more accurate volume estimates for Mimosa caesalpinifolia. The ANNs calibrated with two neurons in the middle layer exhibited the best fit for all three species. As such, artificial neural networks can be recommended to estimate the individual volumes of the species analyzed in the study area.O uso de modelos para estimar a produção florestal é uma importante ferramenta em áreas plantadas. Embora esse assunto tenha sido estudado em todo o mundo, ainda falta conhecimento a respeito da medição de volume para locais específicos, como os do Nordeste do Brasil. Desta forma, objetivou-se com este estudo avaliar o potencial de predição de redes neurais artificiais e regressão para a estimativa do volume de madeira em povoamentos homogêneos de Anadantera macrocarpa, Genipa americana e Mimosa caesalpiniflolia. Os métodos de regressão e de redes neurais artificiais (RNAs) mostraram-se aplicáveis para a estimativa do volume individual dos povoamentos em diferentes espaçamentos, aos sete anos de idade. O modelo de regressão de Spurr apresentou melhores resultados estatísticos e dispersão dos erros não tendenciosos para as espécies Anadantera macrocarpa e Genipa americana. Já o modelo de Shumacher-Hall foi mais preciso para a estimativa do volume da espécie Mimosa caesalpinifolia. As RNAs, com dois neurônios na camada intermediária, proporcionaram melhores ajustes para as três espécies, portanto, são recomendadas para estimar os volumes individuais das espécies avaliadas, por mostrar maior precisão, em relação à regressão, na estimativa do volume das espécies nativas avaliadas.Universidade Federal de Campina Grande2022-02-15T22:00:20Z2022-02-15T22:00:20Z2021-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfAMORIM, L. M. et al. Artificial neural networks and regression analysis for volume estimation in native species. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 25, n. 10, p. 664-669, Oct. 2021. DOI: https://doi.org/10.1590/1807-1929/agriambi.v25n10p664-669 .http://repositorio.ufla.br/jspui/handle/1/49340Revista Brasileira de Engenharia Agrícola e Ambiental - Brazilian Journal of Agricultural and Environmental Engineeringreponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAmorim, Lucas M.Leite, Elton da S.Souza, Deoclides R. deSilva, Liniker F. daMello, Carlos R. deLima, José M. deeng2022-02-15T22:00:46Zoai:localhost:1/49340Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2022-02-15T22:00:46Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Artificial neural networks and regression analysis for volume estimation in native species Redes neurais artificiais e análise de regressão para estimativa de volume de espécies nativas |
title |
Artificial neural networks and regression analysis for volume estimation in native species |
spellingShingle |
Artificial neural networks and regression analysis for volume estimation in native species Amorim, Lucas M. Native forest Production volume Prediction models Artificial neural networks (ANNs) Florestas nativas Volume de produção Modelos de predição Redes neurais artificiais (RNAs) |
title_short |
Artificial neural networks and regression analysis for volume estimation in native species |
title_full |
Artificial neural networks and regression analysis for volume estimation in native species |
title_fullStr |
Artificial neural networks and regression analysis for volume estimation in native species |
title_full_unstemmed |
Artificial neural networks and regression analysis for volume estimation in native species |
title_sort |
Artificial neural networks and regression analysis for volume estimation in native species |
author |
Amorim, Lucas M. |
author_facet |
Amorim, Lucas M. Leite, Elton da S. Souza, Deoclides R. de Silva, Liniker F. da Mello, Carlos R. de Lima, José M. de |
author_role |
author |
author2 |
Leite, Elton da S. Souza, Deoclides R. de Silva, Liniker F. da Mello, Carlos R. de Lima, José M. de |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Amorim, Lucas M. Leite, Elton da S. Souza, Deoclides R. de Silva, Liniker F. da Mello, Carlos R. de Lima, José M. de |
dc.subject.por.fl_str_mv |
Native forest Production volume Prediction models Artificial neural networks (ANNs) Florestas nativas Volume de produção Modelos de predição Redes neurais artificiais (RNAs) |
topic |
Native forest Production volume Prediction models Artificial neural networks (ANNs) Florestas nativas Volume de produção Modelos de predição Redes neurais artificiais (RNAs) |
description |
Modeling is an important tool to estimate forest production in planted areas. Although this issue has been studied worldwide, knowledge regarding volume measurement in specific locations such as Northeast Brazil is still scarce. The present study aimed to evaluated the effectiveness of artificial neural networks (ANNs) and regression analysis in estimating the timber volume of homogeneous stands of Anadantera macrocarpa, Genipa americana, and Mimosa casalpinifolia, in order to better predict the growth and production of these species. Both methods were suitable for estimating the individual volume in 7-year-old stands with different spacing. The Spurr regression model showed better statistical results and dispersion of unbiased errors for Anadantera macrocarpa and Genipa americana, whereas the Shumacher-Hall model provided more accurate volume estimates for Mimosa caesalpinifolia. The ANNs calibrated with two neurons in the middle layer exhibited the best fit for all three species. As such, artificial neural networks can be recommended to estimate the individual volumes of the species analyzed in the study area. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08 2022-02-15T22:00:20Z 2022-02-15T22:00:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
AMORIM, L. M. et al. Artificial neural networks and regression analysis for volume estimation in native species. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 25, n. 10, p. 664-669, Oct. 2021. DOI: https://doi.org/10.1590/1807-1929/agriambi.v25n10p664-669 . http://repositorio.ufla.br/jspui/handle/1/49340 |
identifier_str_mv |
AMORIM, L. M. et al. Artificial neural networks and regression analysis for volume estimation in native species. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, v. 25, n. 10, p. 664-669, Oct. 2021. DOI: https://doi.org/10.1590/1807-1929/agriambi.v25n10p664-669 . |
url |
http://repositorio.ufla.br/jspui/handle/1/49340 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Campina Grande |
publisher.none.fl_str_mv |
Universidade Federal de Campina Grande |
dc.source.none.fl_str_mv |
Revista Brasileira de Engenharia Agrícola e Ambiental - Brazilian Journal of Agricultural and Environmental Engineering reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439000748425216 |