Data mining of meteorological-related attributes from smartphone data

Detalhes bibliográficos
Autor(a) principal: Brito, Luiz Fernando Afra
Data de Publicação: 2017
Outros Autores: Albertini, Marcelo Keese
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/15025
Resumo: This paper presents studies on using data mining techniques with data collected from mobile devices in order to verify the viability of usage on rainfall alert systems.In our study, we have employed smartphones to gather meteorological-related data from telecommunication technologies, such as, Global System for Mobile Communications (GSM) and Global Positioning System (GPS). In order to evaluate the capability of monitoring rain with data from smartphones, we used a simplified rainfall simulator to conduct studies in controlled scenarios.We used classification algorithms such as k-Nearest Neighbors, Support Vector Machine and Decision Tree to identify rainfall types (no rain, light rain and heavy rain). The classification results were promising and showed area under ROC curve of 0.95 with the k-Nearest Neighbors algorithm and 0.80 with Support Vector Machine. Additionally we have conducted preliminary and promising experiments in a real world scenario which motivates further research on data collection, preprocessing and specialized classification for alarm systems.
id UFLA_f97dc1ef809a5449413fdb15459737a2
oai_identifier_str oai:localhost:1/15025
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Data mining of meteorological-related attributes from smartphone dataData miningRainfallSmartphonesSignal strengthThis paper presents studies on using data mining techniques with data collected from mobile devices in order to verify the viability of usage on rainfall alert systems.In our study, we have employed smartphones to gather meteorological-related data from telecommunication technologies, such as, Global System for Mobile Communications (GSM) and Global Positioning System (GPS). In order to evaluate the capability of monitoring rain with data from smartphones, we used a simplified rainfall simulator to conduct studies in controlled scenarios.We used classification algorithms such as k-Nearest Neighbors, Support Vector Machine and Decision Tree to identify rainfall types (no rain, light rain and heavy rain). The classification results were promising and showed area under ROC curve of 0.95 with the k-Nearest Neighbors algorithm and 0.80 with Support Vector Machine. Additionally we have conducted preliminary and promising experiments in a real world scenario which motivates further research on data collection, preprocessing and specialized classification for alarm systems.Universidade Federal de Lavras (UFLA)2017-08-01T21:08:48Z2017-08-01T21:08:48Z2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfBRITO, L. F. A.; ALBERTINI, M. K. Data mining of meteorological-related attributes from smartphone data. INFOCOMP Journal of Computer Science, Lavras, v. 15, n. 2, p. 1-9, Dec. 2016.http://repositorio.ufla.br/jspui/handle/1/15025INFOCOMP; Vol 15 No 2 (2016): December 2016; 1-91982-33631807-4545reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttp://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/532/488Copyright (c) 2016 INFOCOMP Journal of Computer ScienceAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessBrito, Luiz Fernando AfraAlbertini, Marcelo Keese2021-09-12T02:07:48Zoai:localhost:1/15025Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-09-12T02:07:48Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Data mining of meteorological-related attributes from smartphone data
title Data mining of meteorological-related attributes from smartphone data
spellingShingle Data mining of meteorological-related attributes from smartphone data
Brito, Luiz Fernando Afra
Data mining
Rainfall
Smartphones
Signal strength
title_short Data mining of meteorological-related attributes from smartphone data
title_full Data mining of meteorological-related attributes from smartphone data
title_fullStr Data mining of meteorological-related attributes from smartphone data
title_full_unstemmed Data mining of meteorological-related attributes from smartphone data
title_sort Data mining of meteorological-related attributes from smartphone data
author Brito, Luiz Fernando Afra
author_facet Brito, Luiz Fernando Afra
Albertini, Marcelo Keese
author_role author
author2 Albertini, Marcelo Keese
author2_role author
dc.contributor.author.fl_str_mv Brito, Luiz Fernando Afra
Albertini, Marcelo Keese
dc.subject.por.fl_str_mv Data mining
Rainfall
Smartphones
Signal strength
topic Data mining
Rainfall
Smartphones
Signal strength
description This paper presents studies on using data mining techniques with data collected from mobile devices in order to verify the viability of usage on rainfall alert systems.In our study, we have employed smartphones to gather meteorological-related data from telecommunication technologies, such as, Global System for Mobile Communications (GSM) and Global Positioning System (GPS). In order to evaluate the capability of monitoring rain with data from smartphones, we used a simplified rainfall simulator to conduct studies in controlled scenarios.We used classification algorithms such as k-Nearest Neighbors, Support Vector Machine and Decision Tree to identify rainfall types (no rain, light rain and heavy rain). The classification results were promising and showed area under ROC curve of 0.95 with the k-Nearest Neighbors algorithm and 0.80 with Support Vector Machine. Additionally we have conducted preliminary and promising experiments in a real world scenario which motivates further research on data collection, preprocessing and specialized classification for alarm systems.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-01T21:08:48Z
2017-08-01T21:08:48Z
2017-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv BRITO, L. F. A.; ALBERTINI, M. K. Data mining of meteorological-related attributes from smartphone data. INFOCOMP Journal of Computer Science, Lavras, v. 15, n. 2, p. 1-9, Dec. 2016.
http://repositorio.ufla.br/jspui/handle/1/15025
identifier_str_mv BRITO, L. F. A.; ALBERTINI, M. K. Data mining of meteorological-related attributes from smartphone data. INFOCOMP Journal of Computer Science, Lavras, v. 15, n. 2, p. 1-9, Dec. 2016.
url http://repositorio.ufla.br/jspui/handle/1/15025
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/532/488
dc.rights.driver.fl_str_mv Copyright (c) 2016 INFOCOMP Journal of Computer Science
Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2016 INFOCOMP Journal of Computer Science
Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Lavras (UFLA)
publisher.none.fl_str_mv Universidade Federal de Lavras (UFLA)
dc.source.none.fl_str_mv INFOCOMP; Vol 15 No 2 (2016): December 2016; 1-9
1982-3363
1807-4545
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815438951169654784