Data mining of meteorological-related attributes from smartphone data
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/15025 |
Resumo: | This paper presents studies on using data mining techniques with data collected from mobile devices in order to verify the viability of usage on rainfall alert systems.In our study, we have employed smartphones to gather meteorological-related data from telecommunication technologies, such as, Global System for Mobile Communications (GSM) and Global Positioning System (GPS). In order to evaluate the capability of monitoring rain with data from smartphones, we used a simplified rainfall simulator to conduct studies in controlled scenarios.We used classification algorithms such as k-Nearest Neighbors, Support Vector Machine and Decision Tree to identify rainfall types (no rain, light rain and heavy rain). The classification results were promising and showed area under ROC curve of 0.95 with the k-Nearest Neighbors algorithm and 0.80 with Support Vector Machine. Additionally we have conducted preliminary and promising experiments in a real world scenario which motivates further research on data collection, preprocessing and specialized classification for alarm systems. |
id |
UFLA_f97dc1ef809a5449413fdb15459737a2 |
---|---|
oai_identifier_str |
oai:localhost:1/15025 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Data mining of meteorological-related attributes from smartphone dataData miningRainfallSmartphonesSignal strengthThis paper presents studies on using data mining techniques with data collected from mobile devices in order to verify the viability of usage on rainfall alert systems.In our study, we have employed smartphones to gather meteorological-related data from telecommunication technologies, such as, Global System for Mobile Communications (GSM) and Global Positioning System (GPS). In order to evaluate the capability of monitoring rain with data from smartphones, we used a simplified rainfall simulator to conduct studies in controlled scenarios.We used classification algorithms such as k-Nearest Neighbors, Support Vector Machine and Decision Tree to identify rainfall types (no rain, light rain and heavy rain). The classification results were promising and showed area under ROC curve of 0.95 with the k-Nearest Neighbors algorithm and 0.80 with Support Vector Machine. Additionally we have conducted preliminary and promising experiments in a real world scenario which motivates further research on data collection, preprocessing and specialized classification for alarm systems.Universidade Federal de Lavras (UFLA)2017-08-01T21:08:48Z2017-08-01T21:08:48Z2017-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfBRITO, L. F. A.; ALBERTINI, M. K. Data mining of meteorological-related attributes from smartphone data. INFOCOMP Journal of Computer Science, Lavras, v. 15, n. 2, p. 1-9, Dec. 2016.http://repositorio.ufla.br/jspui/handle/1/15025INFOCOMP; Vol 15 No 2 (2016): December 2016; 1-91982-33631807-4545reponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttp://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/532/488Copyright (c) 2016 INFOCOMP Journal of Computer ScienceAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessBrito, Luiz Fernando AfraAlbertini, Marcelo Keese2021-09-12T02:07:48Zoai:localhost:1/15025Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2021-09-12T02:07:48Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Data mining of meteorological-related attributes from smartphone data |
title |
Data mining of meteorological-related attributes from smartphone data |
spellingShingle |
Data mining of meteorological-related attributes from smartphone data Brito, Luiz Fernando Afra Data mining Rainfall Smartphones Signal strength |
title_short |
Data mining of meteorological-related attributes from smartphone data |
title_full |
Data mining of meteorological-related attributes from smartphone data |
title_fullStr |
Data mining of meteorological-related attributes from smartphone data |
title_full_unstemmed |
Data mining of meteorological-related attributes from smartphone data |
title_sort |
Data mining of meteorological-related attributes from smartphone data |
author |
Brito, Luiz Fernando Afra |
author_facet |
Brito, Luiz Fernando Afra Albertini, Marcelo Keese |
author_role |
author |
author2 |
Albertini, Marcelo Keese |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Brito, Luiz Fernando Afra Albertini, Marcelo Keese |
dc.subject.por.fl_str_mv |
Data mining Rainfall Smartphones Signal strength |
topic |
Data mining Rainfall Smartphones Signal strength |
description |
This paper presents studies on using data mining techniques with data collected from mobile devices in order to verify the viability of usage on rainfall alert systems.In our study, we have employed smartphones to gather meteorological-related data from telecommunication technologies, such as, Global System for Mobile Communications (GSM) and Global Positioning System (GPS). In order to evaluate the capability of monitoring rain with data from smartphones, we used a simplified rainfall simulator to conduct studies in controlled scenarios.We used classification algorithms such as k-Nearest Neighbors, Support Vector Machine and Decision Tree to identify rainfall types (no rain, light rain and heavy rain). The classification results were promising and showed area under ROC curve of 0.95 with the k-Nearest Neighbors algorithm and 0.80 with Support Vector Machine. Additionally we have conducted preliminary and promising experiments in a real world scenario which motivates further research on data collection, preprocessing and specialized classification for alarm systems. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08-01T21:08:48Z 2017-08-01T21:08:48Z 2017-08-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
BRITO, L. F. A.; ALBERTINI, M. K. Data mining of meteorological-related attributes from smartphone data. INFOCOMP Journal of Computer Science, Lavras, v. 15, n. 2, p. 1-9, Dec. 2016. http://repositorio.ufla.br/jspui/handle/1/15025 |
identifier_str_mv |
BRITO, L. F. A.; ALBERTINI, M. K. Data mining of meteorological-related attributes from smartphone data. INFOCOMP Journal of Computer Science, Lavras, v. 15, n. 2, p. 1-9, Dec. 2016. |
url |
http://repositorio.ufla.br/jspui/handle/1/15025 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.dcc.ufla.br/infocomp/index.php/INFOCOMP/article/view/532/488 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2016 INFOCOMP Journal of Computer Science Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2016 INFOCOMP Journal of Computer Science Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Lavras (UFLA) |
publisher.none.fl_str_mv |
Universidade Federal de Lavras (UFLA) |
dc.source.none.fl_str_mv |
INFOCOMP; Vol 15 No 2 (2016): December 2016; 1-9 1982-3363 1807-4545 reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815438951169654784 |