Desenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes Convolucionais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/tede/2163 |
Resumo: | Convolutional Neural Networks (CNN) has been successfully used for positioning operations on standalone platforms, for environments whose scenario complexity and image pre-processing capabilities are decisive factors for the success of the classification (repositioning attitudes). The objective of the present study is to develop an autonomous approximation system with the base classification of images by a CNN. The results show the superior CNN (accuracy 82%) to a method that uses Decision threshold and Markers (accuracy 51.8%), developed an initial test of the approach system. For the generation of the database based on the virtual model and its insertion different operating scenarios was used an image processing technique characterized as \Background Subtraction", where from a control threshold, the desired object) was extracted from the \Background"(pixels of the scenario), and later inserted in another \Background" (pixels related to the desired scenario), associated with the angle values of the respective model. The final results obtained include a tool for generating a database (applied to machine learning methods) and automating the repositioning process. |
id |
UFMA_1dd8f1b1fa444d7004095e1096e304a5 |
---|---|
oai_identifier_str |
oai:tede2:tede/2163 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
BARROS FILHO, Allan Kardec Duailibe340225893-53http://lattes.cnpq.br/0492330410079141CAVALCANTE, André Borges006407643-12http://lattes.cnpq.br/3885279033465023BARROS FILHO, Allan Kardec Duailibe340225893-53http://lattes.cnpq.br/0492330410079141SANTANA, Ewaldo Eder Carvalhohttp://lattes.cnpq.br/0660692009750374FREIRE, Raimundo Carlos Silvériohttp://lattes.cnpq.br/4016576596215504CAVALCANTE, André Borges006407643-12http://lattes.cnpq.br/3885279033465023042228883-70http://lattes.cnpq.br/6261673583722884SANTOS, Daniel de Matos Luna dos2018-04-09T15:56:46Z2018-02-28SANTOS, Daniel de Matos Luna dos. Desenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes Convolucionais. 2018. 83f. Dissertação (Mestrado em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís.https://tedebc.ufma.br/jspui/handle/tede/tede/2163Convolutional Neural Networks (CNN) has been successfully used for positioning operations on standalone platforms, for environments whose scenario complexity and image pre-processing capabilities are decisive factors for the success of the classification (repositioning attitudes). The objective of the present study is to develop an autonomous approximation system with the base classification of images by a CNN. The results show the superior CNN (accuracy 82%) to a method that uses Decision threshold and Markers (accuracy 51.8%), developed an initial test of the approach system. For the generation of the database based on the virtual model and its insertion different operating scenarios was used an image processing technique characterized as \Background Subtraction", where from a control threshold, the desired object) was extracted from the \Background"(pixels of the scenario), and later inserted in another \Background" (pixels related to the desired scenario), associated with the angle values of the respective model. The final results obtained include a tool for generating a database (applied to machine learning methods) and automating the repositioning process.As Redes Neuronais Convolucionais (do inglês Convolutional Neural NetworksCNN ) têm sido utilizadas com sucesso para operações de alinhamento em plataformas autônomas, para ambientes cuja complexidade do cenário e os recursos de pré-processamento da imagem são fatores decisivos para o sucesso da classificação (atitudes de reposicionamento). O objetivo do presente estudo é desenvolver um sistema de aproximação autônomo com base na classificação de imagens por uma CNN. Os resultados obtidos mostram a CNN superior (Acurácia 82%) a um método que utiliza Limiar de Decisão e Marcadores (Acurácia 51,8%), desenvolvido para teste inicial do sistema de aproximação. A utilização da Rede Convolucional também implicou no desenvolvimento de uma ferramenta de geração do banco de dados em diferentes cenários nos quais foram gerados tanto sobre o modelo virtual do sistema mecânico, como sobre o modelo físico. Para a geração do banco de dados com base no modelo virtual e sua inserção diferentes cenários de operação foi utilizada uma técnica de processamento de imagem caracterizada como \Background Subtraction", onde a partir de um limiar de controle, o objeto desejado (sistema de sondagem) foi extraído do \Background"(píxeis do cenário), sendo posteriormente inserido em outro \Background"(píxeis referentes ao cenário desejado), associado aos valores de ângulo do respectivo modelo. Na geração do banco de dados com o modelo físico foram utilizados sensores para aquisição de imagens e valores de ângulo de inclinação do sistema de sondagem. Os resultados finais obtidos contemplam uma ferramenta para geração de um banco de dados (aplicados `a métodos de aprendizagem de máquina), e automatização do processo de reposicionamento.Submitted by Daniella Santos (daniella.santos@ufma.br) on 2018-04-09T15:56:46Z No. of bitstreams: 1 DanielSantos.pdf: 5920451 bytes, checksum: 2a6ee6310fbd4512680c98821375a2eb (MD5)Made available in DSpace on 2018-04-09T15:56:46Z (GMT). No. of bitstreams: 1 DanielSantos.pdf: 5920451 bytes, checksum: 2a6ee6310fbd4512680c98821375a2eb (MD5) Previous issue date: 2018-02-28CAPESapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DA ENGENHARIA DA ELETRICIDADE/CCETReposicionamentoBanco de DadosRedes ConvolucionaisAutomatizaçãoImagemRepositioningDatabaseConvolutional NetworksAutomationEngenharia ElétricaDesenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes ConvolucionaisDevelopment of a repositioning system for a robot of probing using convolutional networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALDanielSantos.pdfDanielSantos.pdfapplication/pdf5920451http://tedebc.ufma.br:8080/bitstream/tede/2163/2/DanielSantos.pdf2a6ee6310fbd4512680c98821375a2ebMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/2163/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/21632018-05-17 11:00:59.444oai:tede2:tede/2163IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312018-05-17T14:00:59Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Desenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes Convolucionais |
dc.title.alternative.eng.fl_str_mv |
Development of a repositioning system for a robot of probing using convolutional networks |
title |
Desenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes Convolucionais |
spellingShingle |
Desenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes Convolucionais SANTOS, Daniel de Matos Luna dos Reposicionamento Banco de Dados Redes Convolucionais Automatização Imagem Repositioning Database Convolutional Networks Automation Engenharia Elétrica |
title_short |
Desenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes Convolucionais |
title_full |
Desenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes Convolucionais |
title_fullStr |
Desenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes Convolucionais |
title_full_unstemmed |
Desenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes Convolucionais |
title_sort |
Desenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes Convolucionais |
author |
SANTOS, Daniel de Matos Luna dos |
author_facet |
SANTOS, Daniel de Matos Luna dos |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
BARROS FILHO, Allan Kardec Duailibe |
dc.contributor.advisor1ID.fl_str_mv |
340225893-53 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0492330410079141 |
dc.contributor.advisor-co1.fl_str_mv |
CAVALCANTE, André Borges |
dc.contributor.advisor-co1ID.fl_str_mv |
006407643-12 |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/3885279033465023 |
dc.contributor.referee1.fl_str_mv |
BARROS FILHO, Allan Kardec Duailibe |
dc.contributor.referee1ID.fl_str_mv |
340225893-53 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/0492330410079141 |
dc.contributor.referee2.fl_str_mv |
SANTANA, Ewaldo Eder Carvalho |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/0660692009750374 |
dc.contributor.referee3.fl_str_mv |
FREIRE, Raimundo Carlos Silvério |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/4016576596215504 |
dc.contributor.referee4.fl_str_mv |
CAVALCANTE, André Borges |
dc.contributor.referee4ID.fl_str_mv |
006407643-12 |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/3885279033465023 |
dc.contributor.authorID.fl_str_mv |
042228883-70 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6261673583722884 |
dc.contributor.author.fl_str_mv |
SANTOS, Daniel de Matos Luna dos |
contributor_str_mv |
BARROS FILHO, Allan Kardec Duailibe CAVALCANTE, André Borges BARROS FILHO, Allan Kardec Duailibe SANTANA, Ewaldo Eder Carvalho FREIRE, Raimundo Carlos Silvério CAVALCANTE, André Borges |
dc.subject.por.fl_str_mv |
Reposicionamento Banco de Dados Redes Convolucionais Automatização Imagem |
topic |
Reposicionamento Banco de Dados Redes Convolucionais Automatização Imagem Repositioning Database Convolutional Networks Automation Engenharia Elétrica |
dc.subject.eng.fl_str_mv |
Repositioning Database Convolutional Networks Automation |
dc.subject.cnpq.fl_str_mv |
Engenharia Elétrica |
description |
Convolutional Neural Networks (CNN) has been successfully used for positioning operations on standalone platforms, for environments whose scenario complexity and image pre-processing capabilities are decisive factors for the success of the classification (repositioning attitudes). The objective of the present study is to develop an autonomous approximation system with the base classification of images by a CNN. The results show the superior CNN (accuracy 82%) to a method that uses Decision threshold and Markers (accuracy 51.8%), developed an initial test of the approach system. For the generation of the database based on the virtual model and its insertion different operating scenarios was used an image processing technique characterized as \Background Subtraction", where from a control threshold, the desired object) was extracted from the \Background"(pixels of the scenario), and later inserted in another \Background" (pixels related to the desired scenario), associated with the angle values of the respective model. The final results obtained include a tool for generating a database (applied to machine learning methods) and automating the repositioning process. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-04-09T15:56:46Z |
dc.date.issued.fl_str_mv |
2018-02-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTOS, Daniel de Matos Luna dos. Desenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes Convolucionais. 2018. 83f. Dissertação (Mestrado em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/tede/2163 |
identifier_str_mv |
SANTOS, Daniel de Matos Luna dos. Desenvolvimento de um Sistema de Reposicionamento para um Robô de Sondagem utilizando Redes Convolucionais. 2018. 83f. Dissertação (Mestrado em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís. |
url |
https://tedebc.ufma.br/jspui/handle/tede/tede/2163 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DA ENGENHARIA DA ELETRICIDADE/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/2163/2/DanielSantos.pdf http://tedebc.ufma.br:8080/bitstream/tede/2163/1/license.txt |
bitstream.checksum.fl_str_mv |
2a6ee6310fbd4512680c98821375a2eb 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1809926188865421312 |