Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/tede/3741 |
Resumo: | Kidney cancer is a public health problem that affects thousands of people worldwide. The precise segmentation of kidneys and kidney tumors can help medical specialists to diagnose diseases and improve treatment planning, which is highly required in clinical practice. However, because of the heterogeneity of kidneys and kidney tumors, manually segmenting is a time-consuming process and subject to variability among specialists. Because of this hard work, computational techniques, such as convolutional neural networks (CNNs), have become popular in automatic medical image segmentation tasks. Three-dimensional (3D) networks have a high segmentation capacity, but they are complex and have high computational costs. Thus, two-dimensional networks are the most used owing to the relatively low memory consumption, but they do not exploit 3D features. Therefore, in this thesis, 2.5D networks, that balances memory consumption and model complexity, are proposed to doctors specialized in the detection of kidneys and kidney tumors in computed tomography (CT). These networks are inserted in a proposed method organized in four steps: (1) image base pre-processing; (2) initial segmentation of kidneys and kidney tumors using ResUNet 2.5D and DeepLabv3+ 2.5D models, respectively; (3) reconstruction of kidney tumors using binary operation; and (4) reduction of false positives using image processing techniques. The proposed method was evaluated in 210 CTs from the KiTS19 image base. In the segmentation of the kidneys, it presented 97.45% of Dice, 95.05% of Jaccard, 99.95% of accuracy, 98.44% of sensitivity and 99.96% of specificity. In the segmentation of renal tumors, 84.06% of Dice, 75.04% of Jaccard, 99.94% accuracy, 88,33% sensitivity and 99.95% specificity were obtained. Overall, the results provide strong evidence that the proposed method is a powerful tool to help diagnose the disease. |
id |
UFMA_2a1fb601644090645ec91999c8dc651e |
---|---|
oai_identifier_str |
oai:tede2:tede/3741 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
SILVA, Aristófanes Corrêahttp://lattes.cnpq.br/2446301582459104ALMEIDA, João Dallyson Sousa dehttp://lattes.cnpq.br/6047330108382641SILVA, Aristófanes Corrêahttp://lattes.cnpq.br/2446301582459104ALMEIDA, João Dallyson Sousa dehttp://lattes.cnpq.br/6047330108382641CONCI, Aurahttp://lattes.cnpq.br/5601388085745497FERNANDES, Leandro Augusto Fratahttp://lattes.cnpq.br/4616848792501359AIRES, Kelson Rômulo Teixeirahttp://lattes.cnpq.br/0065931835203045http://lattes.cnpq.br/2392497569843711CRUZ, Luana Batista da2022-06-22T17:21:06Z2022-05-20CRUZ, Luana Batista da. Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.. 2022. 118 f. Tese( Programa de Pós-Graduação Doutorado em Ciência da Computação/CCET) - Universidade Federal do Maranhão,São Luís, 2020.https://tedebc.ufma.br/jspui/handle/tede/tede/3741Kidney cancer is a public health problem that affects thousands of people worldwide. The precise segmentation of kidneys and kidney tumors can help medical specialists to diagnose diseases and improve treatment planning, which is highly required in clinical practice. However, because of the heterogeneity of kidneys and kidney tumors, manually segmenting is a time-consuming process and subject to variability among specialists. Because of this hard work, computational techniques, such as convolutional neural networks (CNNs), have become popular in automatic medical image segmentation tasks. Three-dimensional (3D) networks have a high segmentation capacity, but they are complex and have high computational costs. Thus, two-dimensional networks are the most used owing to the relatively low memory consumption, but they do not exploit 3D features. Therefore, in this thesis, 2.5D networks, that balances memory consumption and model complexity, are proposed to doctors specialized in the detection of kidneys and kidney tumors in computed tomography (CT). These networks are inserted in a proposed method organized in four steps: (1) image base pre-processing; (2) initial segmentation of kidneys and kidney tumors using ResUNet 2.5D and DeepLabv3+ 2.5D models, respectively; (3) reconstruction of kidney tumors using binary operation; and (4) reduction of false positives using image processing techniques. The proposed method was evaluated in 210 CTs from the KiTS19 image base. In the segmentation of the kidneys, it presented 97.45% of Dice, 95.05% of Jaccard, 99.95% of accuracy, 98.44% of sensitivity and 99.96% of specificity. In the segmentation of renal tumors, 84.06% of Dice, 75.04% of Jaccard, 99.94% accuracy, 88,33% sensitivity and 99.95% specificity were obtained. Overall, the results provide strong evidence that the proposed method is a powerful tool to help diagnose the disease.O câncer renal é um problema de saúde pública que afeta milhares de pessoas em todo o mundo. A segmentação precisa dos rins e dos tumores renais pode ajudar os especialistas a diagnosticar doenças e melhorar o planejamento do tratamento, o que é importante na prática clínica. No entanto, devido à heterogeneidade dos rins e dos tumores renais, a segmentação manual é um processo demorado e sujeito a variabilidade entre os especialistas. Devido a esse trabalho árduo, técnicas computacionais, como redes neurais convolucionais (Convolutional Neural Networks - CNNs), tornaram-se populares em tarefas de segmentação automática de rins e tumores renais. As redes tridimensionais (3D) apresentam bom desempenho em tarefas de segmentação, mas são complexas e apresentam altos custos computacionais. Assim, as redes bidimensionais são as mais usadas devido ao consumo de memória relativamente baixo, mas não exploram os recursos 3D. Portanto, nesta tese, redes 2.5D, que equilibram o consumo de memória e a complexidade do modelo, são propostas para auxiliar médicos especializados na detecção de rins e tumores renais em tomografia computadorizada (TC). Estas redes estão inseridas em um método proposto organizado em quatro etapas: (1) pré-processamento da base de imagens; (2) segmentação inicial dos rins e tumores renais usando os modelos ResUNet 2.5D e DeepLabv3+ 2.5D, respectivamente; (3) reconstrução dos tumores renais usando operação binária; e (4) redução de falsos positivos usando técnicas de processamento de imagens. O método proposto foi avaliado em 210 TCs da base de imagens KiTS19. Na segmentação dos rins, apresentou 97,45% de Dice, 95,05% de Jaccard, 99,95% de acurácia, 98,44% de sensibilidade e 99,96% de especificidade. Na segmentação dos tumores renais, foi obtido 84,06% de Dice, 75,04% de Jaccard, 99,94% de acurácia, 88,33% de sensibilidade e 99,95% de especificidade. De maneira geral, os resultados fornecem fortes evidências de que o método proposto é uma ferramenta com potencial para auxiliar no diagnóstico da doença.Submitted by Maria Aparecida (cidazen@gmail.com) on 2022-06-22T17:21:06Z No. of bitstreams: 1 Tese_Luana_versaoFinal_20Junho2022AssinadaAriAnselmo-Copy.pdf: 12373000 bytes, checksum: a0c665183452bf0dc53177ac63d3246c (MD5)Made available in DSpace on 2022-06-22T17:21:06Z (GMT). No. of bitstreams: 1 Tese_Luana_versaoFinal_20Junho2022AssinadaAriAnselmo-Copy.pdf: 12373000 bytes, checksum: a0c665183452bf0dc53177ac63d3246c (MD5) Previous issue date: 2022-05-20CAPESapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO - ASSOCIAÇÃO UFMA/UFPIUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETCâncer de rim;Segmentação de rim;Segmentação de tumores renais;Redes neurais convolucionais;Aprendizado profundo;Tomografia computadorizada;Imagens médicasKidney cancer;Kidney segmentation;Kidney tumor segmentation;Convolutional neural networks;Deep learning;Computed tomography;Medical imagesComputabilidade e Modelos de ComputaçãoSegmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.Automatic segmentation of kidneys and kidney tumors in computed tomography images based on 2.5D deep learning.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALTese_Luana_versaoFinal_20Junho2022AssinadaAriAnselmo-Copy.pdfTese_Luana_versaoFinal_20Junho2022AssinadaAriAnselmo-Copy.pdfapplication/pdf12373000http://tedebc.ufma.br:8080/bitstream/tede/3741/2/Tese_Luana_versaoFinal_20Junho2022AssinadaAriAnselmo-Copy.pdfa0c665183452bf0dc53177ac63d3246cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/3741/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/37412022-06-22 14:56:59.813oai:tede2:tede/3741IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312022-06-22T17:56:59Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D. |
dc.title.alternative.eng.fl_str_mv |
Automatic segmentation of kidneys and kidney tumors in computed tomography images based on 2.5D deep learning. |
title |
Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D. |
spellingShingle |
Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D. CRUZ, Luana Batista da Câncer de rim; Segmentação de rim; Segmentação de tumores renais; Redes neurais convolucionais; Aprendizado profundo; Tomografia computadorizada; Imagens médicas Kidney cancer; Kidney segmentation; Kidney tumor segmentation; Convolutional neural networks; Deep learning; Computed tomography; Medical images Computabilidade e Modelos de Computação |
title_short |
Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D. |
title_full |
Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D. |
title_fullStr |
Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D. |
title_full_unstemmed |
Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D. |
title_sort |
Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D. |
author |
CRUZ, Luana Batista da |
author_facet |
CRUZ, Luana Batista da |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
SILVA, Aristófanes Corrêa |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2446301582459104 |
dc.contributor.advisor-co1.fl_str_mv |
ALMEIDA, João Dallyson Sousa de |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/6047330108382641 |
dc.contributor.referee1.fl_str_mv |
SILVA, Aristófanes Corrêa |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/2446301582459104 |
dc.contributor.referee2.fl_str_mv |
ALMEIDA, João Dallyson Sousa de |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/6047330108382641 |
dc.contributor.referee3.fl_str_mv |
CONCI, Aura |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/5601388085745497 |
dc.contributor.referee4.fl_str_mv |
FERNANDES, Leandro Augusto Frata |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/4616848792501359 |
dc.contributor.referee5.fl_str_mv |
AIRES, Kelson Rômulo Teixeira |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/0065931835203045 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2392497569843711 |
dc.contributor.author.fl_str_mv |
CRUZ, Luana Batista da |
contributor_str_mv |
SILVA, Aristófanes Corrêa ALMEIDA, João Dallyson Sousa de SILVA, Aristófanes Corrêa ALMEIDA, João Dallyson Sousa de CONCI, Aura FERNANDES, Leandro Augusto Frata AIRES, Kelson Rômulo Teixeira |
dc.subject.por.fl_str_mv |
Câncer de rim; Segmentação de rim; Segmentação de tumores renais; Redes neurais convolucionais; Aprendizado profundo; Tomografia computadorizada; Imagens médicas |
topic |
Câncer de rim; Segmentação de rim; Segmentação de tumores renais; Redes neurais convolucionais; Aprendizado profundo; Tomografia computadorizada; Imagens médicas Kidney cancer; Kidney segmentation; Kidney tumor segmentation; Convolutional neural networks; Deep learning; Computed tomography; Medical images Computabilidade e Modelos de Computação |
dc.subject.eng.fl_str_mv |
Kidney cancer; Kidney segmentation; Kidney tumor segmentation; Convolutional neural networks; Deep learning; Computed tomography; Medical images |
dc.subject.cnpq.fl_str_mv |
Computabilidade e Modelos de Computação |
description |
Kidney cancer is a public health problem that affects thousands of people worldwide. The precise segmentation of kidneys and kidney tumors can help medical specialists to diagnose diseases and improve treatment planning, which is highly required in clinical practice. However, because of the heterogeneity of kidneys and kidney tumors, manually segmenting is a time-consuming process and subject to variability among specialists. Because of this hard work, computational techniques, such as convolutional neural networks (CNNs), have become popular in automatic medical image segmentation tasks. Three-dimensional (3D) networks have a high segmentation capacity, but they are complex and have high computational costs. Thus, two-dimensional networks are the most used owing to the relatively low memory consumption, but they do not exploit 3D features. Therefore, in this thesis, 2.5D networks, that balances memory consumption and model complexity, are proposed to doctors specialized in the detection of kidneys and kidney tumors in computed tomography (CT). These networks are inserted in a proposed method organized in four steps: (1) image base pre-processing; (2) initial segmentation of kidneys and kidney tumors using ResUNet 2.5D and DeepLabv3+ 2.5D models, respectively; (3) reconstruction of kidney tumors using binary operation; and (4) reduction of false positives using image processing techniques. The proposed method was evaluated in 210 CTs from the KiTS19 image base. In the segmentation of the kidneys, it presented 97.45% of Dice, 95.05% of Jaccard, 99.95% of accuracy, 98.44% of sensitivity and 99.96% of specificity. In the segmentation of renal tumors, 84.06% of Dice, 75.04% of Jaccard, 99.94% accuracy, 88,33% sensitivity and 99.95% specificity were obtained. Overall, the results provide strong evidence that the proposed method is a powerful tool to help diagnose the disease. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-06-22T17:21:06Z |
dc.date.issued.fl_str_mv |
2022-05-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CRUZ, Luana Batista da. Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.. 2022. 118 f. Tese( Programa de Pós-Graduação Doutorado em Ciência da Computação/CCET) - Universidade Federal do Maranhão,São Luís, 2020. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/tede/3741 |
identifier_str_mv |
CRUZ, Luana Batista da. Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.. 2022. 118 f. Tese( Programa de Pós-Graduação Doutorado em Ciência da Computação/CCET) - Universidade Federal do Maranhão,São Luís, 2020. |
url |
https://tedebc.ufma.br/jspui/handle/tede/tede/3741 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO - ASSOCIAÇÃO UFMA/UFPI |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/3741/2/Tese_Luana_versaoFinal_20Junho2022AssinadaAriAnselmo-Copy.pdf http://tedebc.ufma.br:8080/bitstream/tede/3741/1/license.txt |
bitstream.checksum.fl_str_mv |
a0c665183452bf0dc53177ac63d3246c 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1809926202733887488 |