Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.

Detalhes bibliográficos
Autor(a) principal: CRUZ, Luana Batista da
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/3741
Resumo: Kidney cancer is a public health problem that affects thousands of people worldwide. The precise segmentation of kidneys and kidney tumors can help medical specialists to diagnose diseases and improve treatment planning, which is highly required in clinical practice. However, because of the heterogeneity of kidneys and kidney tumors, manually segmenting is a time-consuming process and subject to variability among specialists. Because of this hard work, computational techniques, such as convolutional neural networks (CNNs), have become popular in automatic medical image segmentation tasks. Three-dimensional (3D) networks have a high segmentation capacity, but they are complex and have high computational costs. Thus, two-dimensional networks are the most used owing to the relatively low memory consumption, but they do not exploit 3D features. Therefore, in this thesis, 2.5D networks, that balances memory consumption and model complexity, are proposed to doctors specialized in the detection of kidneys and kidney tumors in computed tomography (CT). These networks are inserted in a proposed method organized in four steps: (1) image base pre-processing; (2) initial segmentation of kidneys and kidney tumors using ResUNet 2.5D and DeepLabv3+ 2.5D models, respectively; (3) reconstruction of kidney tumors using binary operation; and (4) reduction of false positives using image processing techniques. The proposed method was evaluated in 210 CTs from the KiTS19 image base. In the segmentation of the kidneys, it presented 97.45% of Dice, 95.05% of Jaccard, 99.95% of accuracy, 98.44% of sensitivity and 99.96% of specificity. In the segmentation of renal tumors, 84.06% of Dice, 75.04% of Jaccard, 99.94% accuracy, 88,33% sensitivity and 99.95% specificity were obtained. Overall, the results provide strong evidence that the proposed method is a powerful tool to help diagnose the disease.
id UFMA_2a1fb601644090645ec91999c8dc651e
oai_identifier_str oai:tede2:tede/3741
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling SILVA, Aristófanes Corrêahttp://lattes.cnpq.br/2446301582459104ALMEIDA, João Dallyson Sousa dehttp://lattes.cnpq.br/6047330108382641SILVA, Aristófanes Corrêahttp://lattes.cnpq.br/2446301582459104ALMEIDA, João Dallyson Sousa dehttp://lattes.cnpq.br/6047330108382641CONCI, Aurahttp://lattes.cnpq.br/5601388085745497FERNANDES, Leandro Augusto Fratahttp://lattes.cnpq.br/4616848792501359AIRES, Kelson Rômulo Teixeirahttp://lattes.cnpq.br/0065931835203045http://lattes.cnpq.br/2392497569843711CRUZ, Luana Batista da2022-06-22T17:21:06Z2022-05-20CRUZ, Luana Batista da. Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.. 2022. 118 f. Tese( Programa de Pós-Graduação Doutorado em Ciência da Computação/CCET) - Universidade Federal do Maranhão,São Luís, 2020.https://tedebc.ufma.br/jspui/handle/tede/tede/3741Kidney cancer is a public health problem that affects thousands of people worldwide. The precise segmentation of kidneys and kidney tumors can help medical specialists to diagnose diseases and improve treatment planning, which is highly required in clinical practice. However, because of the heterogeneity of kidneys and kidney tumors, manually segmenting is a time-consuming process and subject to variability among specialists. Because of this hard work, computational techniques, such as convolutional neural networks (CNNs), have become popular in automatic medical image segmentation tasks. Three-dimensional (3D) networks have a high segmentation capacity, but they are complex and have high computational costs. Thus, two-dimensional networks are the most used owing to the relatively low memory consumption, but they do not exploit 3D features. Therefore, in this thesis, 2.5D networks, that balances memory consumption and model complexity, are proposed to doctors specialized in the detection of kidneys and kidney tumors in computed tomography (CT). These networks are inserted in a proposed method organized in four steps: (1) image base pre-processing; (2) initial segmentation of kidneys and kidney tumors using ResUNet 2.5D and DeepLabv3+ 2.5D models, respectively; (3) reconstruction of kidney tumors using binary operation; and (4) reduction of false positives using image processing techniques. The proposed method was evaluated in 210 CTs from the KiTS19 image base. In the segmentation of the kidneys, it presented 97.45% of Dice, 95.05% of Jaccard, 99.95% of accuracy, 98.44% of sensitivity and 99.96% of specificity. In the segmentation of renal tumors, 84.06% of Dice, 75.04% of Jaccard, 99.94% accuracy, 88,33% sensitivity and 99.95% specificity were obtained. Overall, the results provide strong evidence that the proposed method is a powerful tool to help diagnose the disease.O câncer renal é um problema de saúde pública que afeta milhares de pessoas em todo o mundo. A segmentação precisa dos rins e dos tumores renais pode ajudar os especialistas a diagnosticar doenças e melhorar o planejamento do tratamento, o que é importante na prática clínica. No entanto, devido à heterogeneidade dos rins e dos tumores renais, a segmentação manual é um processo demorado e sujeito a variabilidade entre os especialistas. Devido a esse trabalho árduo, técnicas computacionais, como redes neurais convolucionais (Convolutional Neural Networks - CNNs), tornaram-se populares em tarefas de segmentação automática de rins e tumores renais. As redes tridimensionais (3D) apresentam bom desempenho em tarefas de segmentação, mas são complexas e apresentam altos custos computacionais. Assim, as redes bidimensionais são as mais usadas devido ao consumo de memória relativamente baixo, mas não exploram os recursos 3D. Portanto, nesta tese, redes 2.5D, que equilibram o consumo de memória e a complexidade do modelo, são propostas para auxiliar médicos especializados na detecção de rins e tumores renais em tomografia computadorizada (TC). Estas redes estão inseridas em um método proposto organizado em quatro etapas: (1) pré-processamento da base de imagens; (2) segmentação inicial dos rins e tumores renais usando os modelos ResUNet 2.5D e DeepLabv3+ 2.5D, respectivamente; (3) reconstrução dos tumores renais usando operação binária; e (4) redução de falsos positivos usando técnicas de processamento de imagens. O método proposto foi avaliado em 210 TCs da base de imagens KiTS19. Na segmentação dos rins, apresentou 97,45% de Dice, 95,05% de Jaccard, 99,95% de acurácia, 98,44% de sensibilidade e 99,96% de especificidade. Na segmentação dos tumores renais, foi obtido 84,06% de Dice, 75,04% de Jaccard, 99,94% de acurácia, 88,33% de sensibilidade e 99,95% de especificidade. De maneira geral, os resultados fornecem fortes evidências de que o método proposto é uma ferramenta com potencial para auxiliar no diagnóstico da doença.Submitted by Maria Aparecida (cidazen@gmail.com) on 2022-06-22T17:21:06Z No. of bitstreams: 1 Tese_Luana_versaoFinal_20Junho2022AssinadaAriAnselmo-Copy.pdf: 12373000 bytes, checksum: a0c665183452bf0dc53177ac63d3246c (MD5)Made available in DSpace on 2022-06-22T17:21:06Z (GMT). No. of bitstreams: 1 Tese_Luana_versaoFinal_20Junho2022AssinadaAriAnselmo-Copy.pdf: 12373000 bytes, checksum: a0c665183452bf0dc53177ac63d3246c (MD5) Previous issue date: 2022-05-20CAPESapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO - ASSOCIAÇÃO UFMA/UFPIUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETCâncer de rim;Segmentação de rim;Segmentação de tumores renais;Redes neurais convolucionais;Aprendizado profundo;Tomografia computadorizada;Imagens médicasKidney cancer;Kidney segmentation;Kidney tumor segmentation;Convolutional neural networks;Deep learning;Computed tomography;Medical imagesComputabilidade e Modelos de ComputaçãoSegmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.Automatic segmentation of kidneys and kidney tumors in computed tomography images based on 2.5D deep learning.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALTese_Luana_versaoFinal_20Junho2022AssinadaAriAnselmo-Copy.pdfTese_Luana_versaoFinal_20Junho2022AssinadaAriAnselmo-Copy.pdfapplication/pdf12373000http://tedebc.ufma.br:8080/bitstream/tede/3741/2/Tese_Luana_versaoFinal_20Junho2022AssinadaAriAnselmo-Copy.pdfa0c665183452bf0dc53177ac63d3246cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/3741/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/37412022-06-22 14:56:59.813oai:tede2:tede/3741IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312022-06-22T17:56:59Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.
dc.title.alternative.eng.fl_str_mv Automatic segmentation of kidneys and kidney tumors in computed tomography images based on 2.5D deep learning.
title Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.
spellingShingle Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.
CRUZ, Luana Batista da
Câncer de rim;
Segmentação de rim;
Segmentação de tumores renais;
Redes neurais convolucionais;
Aprendizado profundo;
Tomografia computadorizada;
Imagens médicas
Kidney cancer;
Kidney segmentation;
Kidney tumor segmentation;
Convolutional neural networks;
Deep learning;
Computed tomography;
Medical images
Computabilidade e Modelos de Computação
title_short Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.
title_full Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.
title_fullStr Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.
title_full_unstemmed Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.
title_sort Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.
author CRUZ, Luana Batista da
author_facet CRUZ, Luana Batista da
author_role author
dc.contributor.advisor1.fl_str_mv SILVA, Aristófanes Corrêa
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2446301582459104
dc.contributor.advisor-co1.fl_str_mv ALMEIDA, João Dallyson Sousa de
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/6047330108382641
dc.contributor.referee1.fl_str_mv SILVA, Aristófanes Corrêa
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/2446301582459104
dc.contributor.referee2.fl_str_mv ALMEIDA, João Dallyson Sousa de
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/6047330108382641
dc.contributor.referee3.fl_str_mv CONCI, Aura
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/5601388085745497
dc.contributor.referee4.fl_str_mv FERNANDES, Leandro Augusto Frata
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/4616848792501359
dc.contributor.referee5.fl_str_mv AIRES, Kelson Rômulo Teixeira
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/0065931835203045
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2392497569843711
dc.contributor.author.fl_str_mv CRUZ, Luana Batista da
contributor_str_mv SILVA, Aristófanes Corrêa
ALMEIDA, João Dallyson Sousa de
SILVA, Aristófanes Corrêa
ALMEIDA, João Dallyson Sousa de
CONCI, Aura
FERNANDES, Leandro Augusto Frata
AIRES, Kelson Rômulo Teixeira
dc.subject.por.fl_str_mv Câncer de rim;
Segmentação de rim;
Segmentação de tumores renais;
Redes neurais convolucionais;
Aprendizado profundo;
Tomografia computadorizada;
Imagens médicas
topic Câncer de rim;
Segmentação de rim;
Segmentação de tumores renais;
Redes neurais convolucionais;
Aprendizado profundo;
Tomografia computadorizada;
Imagens médicas
Kidney cancer;
Kidney segmentation;
Kidney tumor segmentation;
Convolutional neural networks;
Deep learning;
Computed tomography;
Medical images
Computabilidade e Modelos de Computação
dc.subject.eng.fl_str_mv Kidney cancer;
Kidney segmentation;
Kidney tumor segmentation;
Convolutional neural networks;
Deep learning;
Computed tomography;
Medical images
dc.subject.cnpq.fl_str_mv Computabilidade e Modelos de Computação
description Kidney cancer is a public health problem that affects thousands of people worldwide. The precise segmentation of kidneys and kidney tumors can help medical specialists to diagnose diseases and improve treatment planning, which is highly required in clinical practice. However, because of the heterogeneity of kidneys and kidney tumors, manually segmenting is a time-consuming process and subject to variability among specialists. Because of this hard work, computational techniques, such as convolutional neural networks (CNNs), have become popular in automatic medical image segmentation tasks. Three-dimensional (3D) networks have a high segmentation capacity, but they are complex and have high computational costs. Thus, two-dimensional networks are the most used owing to the relatively low memory consumption, but they do not exploit 3D features. Therefore, in this thesis, 2.5D networks, that balances memory consumption and model complexity, are proposed to doctors specialized in the detection of kidneys and kidney tumors in computed tomography (CT). These networks are inserted in a proposed method organized in four steps: (1) image base pre-processing; (2) initial segmentation of kidneys and kidney tumors using ResUNet 2.5D and DeepLabv3+ 2.5D models, respectively; (3) reconstruction of kidney tumors using binary operation; and (4) reduction of false positives using image processing techniques. The proposed method was evaluated in 210 CTs from the KiTS19 image base. In the segmentation of the kidneys, it presented 97.45% of Dice, 95.05% of Jaccard, 99.95% of accuracy, 98.44% of sensitivity and 99.96% of specificity. In the segmentation of renal tumors, 84.06% of Dice, 75.04% of Jaccard, 99.94% accuracy, 88,33% sensitivity and 99.95% specificity were obtained. Overall, the results provide strong evidence that the proposed method is a powerful tool to help diagnose the disease.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-06-22T17:21:06Z
dc.date.issued.fl_str_mv 2022-05-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CRUZ, Luana Batista da. Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.. 2022. 118 f. Tese( Programa de Pós-Graduação Doutorado em Ciência da Computação/CCET) - Universidade Federal do Maranhão,São Luís, 2020.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/3741
identifier_str_mv CRUZ, Luana Batista da. Segmentação automática de rins e tumores renais em imagens de tomografia computadorizada baseada em aprendizado profundo 2.5D.. 2022. 118 f. Tese( Programa de Pós-Graduação Doutorado em Ciência da Computação/CCET) - Universidade Federal do Maranhão,São Luís, 2020.
url https://tedebc.ufma.br/jspui/handle/tede/tede/3741
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO - ASSOCIAÇÃO UFMA/UFPI
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/3741/2/Tese_Luana_versaoFinal_20Junho2022AssinadaAriAnselmo-Copy.pdf
http://tedebc.ufma.br:8080/bitstream/tede/3741/1/license.txt
bitstream.checksum.fl_str_mv a0c665183452bf0dc53177ac63d3246c
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926202733887488