Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/tede/4147 |
Resumo: | The sixth cranial nerve, also known as the abducens nerve, is responsible for controlling the movements of the lateral rectus muscle. Palsies on the sixth nerve prevent some muscles that control eye movements from proper functioning, causing headaches, migraines, blurred vision, vertigo, and double vision. Hence, such palsy should be diagnosed in the early stages so that it can be treated without leaving any sequela. The usual methods for diagnosing the sixth nerve palsy are invasive or depend on expensive equipment, and computer-based methods designed specifically to assist on the diagnose of the aforementioned palsy were not found, until the publication of this work. Therefore, a low-cost, non-invasive method can support or guide the ophthalmologist’s diagnosis. In this context, this work presents a computational methodology to aid in diagnosing the sixth nerve palsy using videos, in order to assist ophthalmologists in the diagnostic process, serving as a second opinion. The proposed method uses convolutional neural networks and image processing techniques to track both eyes’ movement trajectory during the video. With this trajectory, it is possible to calculate the average speed in which each eye moves. Since it is known that paretic eyes move slower than healthy eyes, comparing the average speed of both eyes can determine if the eye is healthy or paretic. The results obtained with the proposed method showed that paretic eyes move at least 19.65% slower than healthy ones. This threshold, along with the average speed of the movement of the eyes, can help ophthalmologists in their analysis. The proposed method reached 92.64% accuracy in the diagnosis of the sixth nerve palsy, with a Kappa index of 0.925, which highlights the reliability of the results and gives favorable perspectives for further clinical application. |
id |
UFMA_34117af4bc1645513c299be783d7a861 |
---|---|
oai_identifier_str |
oai:tede2:tede/4147 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
ALMEIDA, João Dallyson Sousa dehttp://lattes.cnpq.br/6047330108382641ALMEIDA, João Dallyson Sousa dehttp://lattes.cnpq.br/6047330108382641BRAZ JÚNIOR, Geraldohttp://lattes.cnpq.br/8287861610873629TEIXEIRA, Jorge Antônio Meireleshttp://lattes.cnpq.br/6526557437424480FERNANDES, Leandro Augusto Fratahttp://lattes.cnpq.br/4616848792501359http://lattes.cnpq.br/3875404341680889COSTA, Polyana Bezerra da2022-10-11T14:18:50Z2020-06-24COSTA, Polyana Bezerra da. Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais. 2020. 108 f. Dissertação ( Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2020.https://tedebc.ufma.br/jspui/handle/tede/tede/4147The sixth cranial nerve, also known as the abducens nerve, is responsible for controlling the movements of the lateral rectus muscle. Palsies on the sixth nerve prevent some muscles that control eye movements from proper functioning, causing headaches, migraines, blurred vision, vertigo, and double vision. Hence, such palsy should be diagnosed in the early stages so that it can be treated without leaving any sequela. The usual methods for diagnosing the sixth nerve palsy are invasive or depend on expensive equipment, and computer-based methods designed specifically to assist on the diagnose of the aforementioned palsy were not found, until the publication of this work. Therefore, a low-cost, non-invasive method can support or guide the ophthalmologist’s diagnosis. In this context, this work presents a computational methodology to aid in diagnosing the sixth nerve palsy using videos, in order to assist ophthalmologists in the diagnostic process, serving as a second opinion. The proposed method uses convolutional neural networks and image processing techniques to track both eyes’ movement trajectory during the video. With this trajectory, it is possible to calculate the average speed in which each eye moves. Since it is known that paretic eyes move slower than healthy eyes, comparing the average speed of both eyes can determine if the eye is healthy or paretic. The results obtained with the proposed method showed that paretic eyes move at least 19.65% slower than healthy ones. This threshold, along with the average speed of the movement of the eyes, can help ophthalmologists in their analysis. The proposed method reached 92.64% accuracy in the diagnosis of the sixth nerve palsy, with a Kappa index of 0.925, which highlights the reliability of the results and gives favorable perspectives for further clinical application.O sexto nervo óptico, também conhecido como nervo abducente, está diretamente ligado à contração do músculo reto lateral. A paralisia deste nervo impede que alguns dos músculos que controlam o movimento dos olhos funcionem adequadamente, causando dor de cabeça, enxaqueca, visão turva, vertigem e visão dupla. É importante que esta paralisia seja diagnosticada nos estágios iniciais, para que seja tratada sem deixar sequelas. Os métodos usuais para diagnóstico desta paralisia são invasivos ou dependentes de equipamentos caros, e métodos computacionais voltados diretamente para a detecção ou diagnóstico da mesma, até o momento da escrita deste trabalho, não foram encontrados. Portanto, um método não invasivo e de baixo custo pode ser útil para apoiar ou guiar o diagnóstico do oftalmologista. Neste contexto, este trabalho apresenta uma metodologia computacional para auxiliar o diagnóstico da paralisia do sexto nervo óptico utilizando vídeos, a fim de assistir oftalmologistas no processo de análise, servindo como uma opinião complementar. O método proposto usa redes neurais convolucionais e técnicas de processamento de imagens para registrar a trajetória de movimentação dos olhos durante o vídeo. A partir desse registro, calcula-se a velocidade de movimentação de cada olho, comparando-as para determinar se o olho é saudável ou parético, visto que olhos com paralisia se movem mais devagar que olhos saudáveis. Os resultados obtidos com o método proposto sugerem que olhos com paralisia movem-se cerca de 19,65% mais devagar que olhos saudáveis. Esse limiar, junto com a velocidade média de movimentação dos olhos, pode ajudar oftalmologistas em sua análise. Testes realizados mostraram que o método atingiu 92,64% de acurácia no diagnóstico da paralisia do sexto nervo, com índice Kappa de 0,925, o que ressalta a confiabilidade dos resultados e dá perspectivas favoráveis para uma futura aplicação clínica do método.Submitted by Daniella Santos (daniella.santos@ufma.br) on 2022-10-11T14:18:50Z No. of bitstreams: 1 POLYANACOSTA.pdf: 2763365 bytes, checksum: 82b77868c5cbd2402f1fb64b401b37ef (MD5)Made available in DSpace on 2022-10-11T14:18:50Z (GMT). No. of bitstreams: 1 POLYANACOSTA.pdf: 2763365 bytes, checksum: 82b77868c5cbd2402f1fb64b401b37ef (MD5) Previous issue date: 2020-06-24application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETparalisia do sexto nervo óptico;redes neurais convolucionais;processamento de imagens;vídeos digitais;sixth nerve palsy;convolutional neural networks;image processing;digital videos;Ciência da ComputaçãoMetodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitaisComputational methodology to aid in the diagnosis of sixth optic nerve palsy through digital videosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALPOLYANACOSTA.pdfPOLYANACOSTA.pdfapplication/pdf2763365http://tedebc.ufma.br:8080/bitstream/tede/4147/2/POLYANACOSTA.pdf82b77868c5cbd2402f1fb64b401b37efMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/4147/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/41472022-10-11 11:18:50.851oai:tede2:tede/4147IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312022-10-11T14:18:50Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais |
dc.title.alternative.eng.fl_str_mv |
Computational methodology to aid in the diagnosis of sixth optic nerve palsy through digital videos |
title |
Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais |
spellingShingle |
Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais COSTA, Polyana Bezerra da paralisia do sexto nervo óptico; redes neurais convolucionais; processamento de imagens; vídeos digitais; sixth nerve palsy; convolutional neural networks; image processing; digital videos; Ciência da Computação |
title_short |
Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais |
title_full |
Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais |
title_fullStr |
Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais |
title_full_unstemmed |
Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais |
title_sort |
Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais |
author |
COSTA, Polyana Bezerra da |
author_facet |
COSTA, Polyana Bezerra da |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
ALMEIDA, João Dallyson Sousa de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6047330108382641 |
dc.contributor.referee1.fl_str_mv |
ALMEIDA, João Dallyson Sousa de |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/6047330108382641 |
dc.contributor.referee2.fl_str_mv |
BRAZ JÚNIOR, Geraldo |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/8287861610873629 |
dc.contributor.referee3.fl_str_mv |
TEIXEIRA, Jorge Antônio Meireles |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/6526557437424480 |
dc.contributor.referee4.fl_str_mv |
FERNANDES, Leandro Augusto Frata |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/4616848792501359 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3875404341680889 |
dc.contributor.author.fl_str_mv |
COSTA, Polyana Bezerra da |
contributor_str_mv |
ALMEIDA, João Dallyson Sousa de ALMEIDA, João Dallyson Sousa de BRAZ JÚNIOR, Geraldo TEIXEIRA, Jorge Antônio Meireles FERNANDES, Leandro Augusto Frata |
dc.subject.por.fl_str_mv |
paralisia do sexto nervo óptico; redes neurais convolucionais; processamento de imagens; vídeos digitais; |
topic |
paralisia do sexto nervo óptico; redes neurais convolucionais; processamento de imagens; vídeos digitais; sixth nerve palsy; convolutional neural networks; image processing; digital videos; Ciência da Computação |
dc.subject.eng.fl_str_mv |
sixth nerve palsy; convolutional neural networks; image processing; digital videos; |
dc.subject.cnpq.fl_str_mv |
Ciência da Computação |
description |
The sixth cranial nerve, also known as the abducens nerve, is responsible for controlling the movements of the lateral rectus muscle. Palsies on the sixth nerve prevent some muscles that control eye movements from proper functioning, causing headaches, migraines, blurred vision, vertigo, and double vision. Hence, such palsy should be diagnosed in the early stages so that it can be treated without leaving any sequela. The usual methods for diagnosing the sixth nerve palsy are invasive or depend on expensive equipment, and computer-based methods designed specifically to assist on the diagnose of the aforementioned palsy were not found, until the publication of this work. Therefore, a low-cost, non-invasive method can support or guide the ophthalmologist’s diagnosis. In this context, this work presents a computational methodology to aid in diagnosing the sixth nerve palsy using videos, in order to assist ophthalmologists in the diagnostic process, serving as a second opinion. The proposed method uses convolutional neural networks and image processing techniques to track both eyes’ movement trajectory during the video. With this trajectory, it is possible to calculate the average speed in which each eye moves. Since it is known that paretic eyes move slower than healthy eyes, comparing the average speed of both eyes can determine if the eye is healthy or paretic. The results obtained with the proposed method showed that paretic eyes move at least 19.65% slower than healthy ones. This threshold, along with the average speed of the movement of the eyes, can help ophthalmologists in their analysis. The proposed method reached 92.64% accuracy in the diagnosis of the sixth nerve palsy, with a Kappa index of 0.925, which highlights the reliability of the results and gives favorable perspectives for further clinical application. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-06-24 |
dc.date.accessioned.fl_str_mv |
2022-10-11T14:18:50Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
COSTA, Polyana Bezerra da. Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais. 2020. 108 f. Dissertação ( Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2020. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/tede/4147 |
identifier_str_mv |
COSTA, Polyana Bezerra da. Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais. 2020. 108 f. Dissertação ( Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2020. |
url |
https://tedebc.ufma.br/jspui/handle/tede/tede/4147 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE INFORMÁTICA/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/4147/2/POLYANACOSTA.pdf http://tedebc.ufma.br:8080/bitstream/tede/4147/1/license.txt |
bitstream.checksum.fl_str_mv |
82b77868c5cbd2402f1fb64b401b37ef 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1809926207466110976 |