Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais

Detalhes bibliográficos
Autor(a) principal: COSTA, Polyana Bezerra da
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/4147
Resumo: The sixth cranial nerve, also known as the abducens nerve, is responsible for controlling the movements of the lateral rectus muscle. Palsies on the sixth nerve prevent some muscles that control eye movements from proper functioning, causing headaches, migraines, blurred vision, vertigo, and double vision. Hence, such palsy should be diagnosed in the early stages so that it can be treated without leaving any sequela. The usual methods for diagnosing the sixth nerve palsy are invasive or depend on expensive equipment, and computer-based methods designed specifically to assist on the diagnose of the aforementioned palsy were not found, until the publication of this work. Therefore, a low-cost, non-invasive method can support or guide the ophthalmologist’s diagnosis. In this context, this work presents a computational methodology to aid in diagnosing the sixth nerve palsy using videos, in order to assist ophthalmologists in the diagnostic process, serving as a second opinion. The proposed method uses convolutional neural networks and image processing techniques to track both eyes’ movement trajectory during the video. With this trajectory, it is possible to calculate the average speed in which each eye moves. Since it is known that paretic eyes move slower than healthy eyes, comparing the average speed of both eyes can determine if the eye is healthy or paretic. The results obtained with the proposed method showed that paretic eyes move at least 19.65% slower than healthy ones. This threshold, along with the average speed of the movement of the eyes, can help ophthalmologists in their analysis. The proposed method reached 92.64% accuracy in the diagnosis of the sixth nerve palsy, with a Kappa index of 0.925, which highlights the reliability of the results and gives favorable perspectives for further clinical application.
id UFMA_34117af4bc1645513c299be783d7a861
oai_identifier_str oai:tede2:tede/4147
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling ALMEIDA, João Dallyson Sousa dehttp://lattes.cnpq.br/6047330108382641ALMEIDA, João Dallyson Sousa dehttp://lattes.cnpq.br/6047330108382641BRAZ JÚNIOR, Geraldohttp://lattes.cnpq.br/8287861610873629TEIXEIRA, Jorge Antônio Meireleshttp://lattes.cnpq.br/6526557437424480FERNANDES, Leandro Augusto Fratahttp://lattes.cnpq.br/4616848792501359http://lattes.cnpq.br/3875404341680889COSTA, Polyana Bezerra da2022-10-11T14:18:50Z2020-06-24COSTA, Polyana Bezerra da. Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais. 2020. 108 f. Dissertação ( Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2020.https://tedebc.ufma.br/jspui/handle/tede/tede/4147The sixth cranial nerve, also known as the abducens nerve, is responsible for controlling the movements of the lateral rectus muscle. Palsies on the sixth nerve prevent some muscles that control eye movements from proper functioning, causing headaches, migraines, blurred vision, vertigo, and double vision. Hence, such palsy should be diagnosed in the early stages so that it can be treated without leaving any sequela. The usual methods for diagnosing the sixth nerve palsy are invasive or depend on expensive equipment, and computer-based methods designed specifically to assist on the diagnose of the aforementioned palsy were not found, until the publication of this work. Therefore, a low-cost, non-invasive method can support or guide the ophthalmologist’s diagnosis. In this context, this work presents a computational methodology to aid in diagnosing the sixth nerve palsy using videos, in order to assist ophthalmologists in the diagnostic process, serving as a second opinion. The proposed method uses convolutional neural networks and image processing techniques to track both eyes’ movement trajectory during the video. With this trajectory, it is possible to calculate the average speed in which each eye moves. Since it is known that paretic eyes move slower than healthy eyes, comparing the average speed of both eyes can determine if the eye is healthy or paretic. The results obtained with the proposed method showed that paretic eyes move at least 19.65% slower than healthy ones. This threshold, along with the average speed of the movement of the eyes, can help ophthalmologists in their analysis. The proposed method reached 92.64% accuracy in the diagnosis of the sixth nerve palsy, with a Kappa index of 0.925, which highlights the reliability of the results and gives favorable perspectives for further clinical application.O sexto nervo óptico, também conhecido como nervo abducente, está diretamente ligado à contração do músculo reto lateral. A paralisia deste nervo impede que alguns dos músculos que controlam o movimento dos olhos funcionem adequadamente, causando dor de cabeça, enxaqueca, visão turva, vertigem e visão dupla. É importante que esta paralisia seja diagnosticada nos estágios iniciais, para que seja tratada sem deixar sequelas. Os métodos usuais para diagnóstico desta paralisia são invasivos ou dependentes de equipamentos caros, e métodos computacionais voltados diretamente para a detecção ou diagnóstico da mesma, até o momento da escrita deste trabalho, não foram encontrados. Portanto, um método não invasivo e de baixo custo pode ser útil para apoiar ou guiar o diagnóstico do oftalmologista. Neste contexto, este trabalho apresenta uma metodologia computacional para auxiliar o diagnóstico da paralisia do sexto nervo óptico utilizando vídeos, a fim de assistir oftalmologistas no processo de análise, servindo como uma opinião complementar. O método proposto usa redes neurais convolucionais e técnicas de processamento de imagens para registrar a trajetória de movimentação dos olhos durante o vídeo. A partir desse registro, calcula-se a velocidade de movimentação de cada olho, comparando-as para determinar se o olho é saudável ou parético, visto que olhos com paralisia se movem mais devagar que olhos saudáveis. Os resultados obtidos com o método proposto sugerem que olhos com paralisia movem-se cerca de 19,65% mais devagar que olhos saudáveis. Esse limiar, junto com a velocidade média de movimentação dos olhos, pode ajudar oftalmologistas em sua análise. Testes realizados mostraram que o método atingiu 92,64% de acurácia no diagnóstico da paralisia do sexto nervo, com índice Kappa de 0,925, o que ressalta a confiabilidade dos resultados e dá perspectivas favoráveis para uma futura aplicação clínica do método.Submitted by Daniella Santos (daniella.santos@ufma.br) on 2022-10-11T14:18:50Z No. of bitstreams: 1 POLYANACOSTA.pdf: 2763365 bytes, checksum: 82b77868c5cbd2402f1fb64b401b37ef (MD5)Made available in DSpace on 2022-10-11T14:18:50Z (GMT). No. of bitstreams: 1 POLYANACOSTA.pdf: 2763365 bytes, checksum: 82b77868c5cbd2402f1fb64b401b37ef (MD5) Previous issue date: 2020-06-24application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETparalisia do sexto nervo óptico;redes neurais convolucionais;processamento de imagens;vídeos digitais;sixth nerve palsy;convolutional neural networks;image processing;digital videos;Ciência da ComputaçãoMetodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitaisComputational methodology to aid in the diagnosis of sixth optic nerve palsy through digital videosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALPOLYANACOSTA.pdfPOLYANACOSTA.pdfapplication/pdf2763365http://tedebc.ufma.br:8080/bitstream/tede/4147/2/POLYANACOSTA.pdf82b77868c5cbd2402f1fb64b401b37efMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/4147/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/41472022-10-11 11:18:50.851oai:tede2:tede/4147IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312022-10-11T14:18:50Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais
dc.title.alternative.eng.fl_str_mv Computational methodology to aid in the diagnosis of sixth optic nerve palsy through digital videos
title Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais
spellingShingle Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais
COSTA, Polyana Bezerra da
paralisia do sexto nervo óptico;
redes neurais convolucionais;
processamento de imagens;
vídeos digitais;
sixth nerve palsy;
convolutional neural networks;
image processing;
digital videos;
Ciência da Computação
title_short Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais
title_full Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais
title_fullStr Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais
title_full_unstemmed Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais
title_sort Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais
author COSTA, Polyana Bezerra da
author_facet COSTA, Polyana Bezerra da
author_role author
dc.contributor.advisor1.fl_str_mv ALMEIDA, João Dallyson Sousa de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6047330108382641
dc.contributor.referee1.fl_str_mv ALMEIDA, João Dallyson Sousa de
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/6047330108382641
dc.contributor.referee2.fl_str_mv BRAZ JÚNIOR, Geraldo
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/8287861610873629
dc.contributor.referee3.fl_str_mv TEIXEIRA, Jorge Antônio Meireles
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/6526557437424480
dc.contributor.referee4.fl_str_mv FERNANDES, Leandro Augusto Frata
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/4616848792501359
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3875404341680889
dc.contributor.author.fl_str_mv COSTA, Polyana Bezerra da
contributor_str_mv ALMEIDA, João Dallyson Sousa de
ALMEIDA, João Dallyson Sousa de
BRAZ JÚNIOR, Geraldo
TEIXEIRA, Jorge Antônio Meireles
FERNANDES, Leandro Augusto Frata
dc.subject.por.fl_str_mv paralisia do sexto nervo óptico;
redes neurais convolucionais;
processamento de imagens;
vídeos digitais;
topic paralisia do sexto nervo óptico;
redes neurais convolucionais;
processamento de imagens;
vídeos digitais;
sixth nerve palsy;
convolutional neural networks;
image processing;
digital videos;
Ciência da Computação
dc.subject.eng.fl_str_mv sixth nerve palsy;
convolutional neural networks;
image processing;
digital videos;
dc.subject.cnpq.fl_str_mv Ciência da Computação
description The sixth cranial nerve, also known as the abducens nerve, is responsible for controlling the movements of the lateral rectus muscle. Palsies on the sixth nerve prevent some muscles that control eye movements from proper functioning, causing headaches, migraines, blurred vision, vertigo, and double vision. Hence, such palsy should be diagnosed in the early stages so that it can be treated without leaving any sequela. The usual methods for diagnosing the sixth nerve palsy are invasive or depend on expensive equipment, and computer-based methods designed specifically to assist on the diagnose of the aforementioned palsy were not found, until the publication of this work. Therefore, a low-cost, non-invasive method can support or guide the ophthalmologist’s diagnosis. In this context, this work presents a computational methodology to aid in diagnosing the sixth nerve palsy using videos, in order to assist ophthalmologists in the diagnostic process, serving as a second opinion. The proposed method uses convolutional neural networks and image processing techniques to track both eyes’ movement trajectory during the video. With this trajectory, it is possible to calculate the average speed in which each eye moves. Since it is known that paretic eyes move slower than healthy eyes, comparing the average speed of both eyes can determine if the eye is healthy or paretic. The results obtained with the proposed method showed that paretic eyes move at least 19.65% slower than healthy ones. This threshold, along with the average speed of the movement of the eyes, can help ophthalmologists in their analysis. The proposed method reached 92.64% accuracy in the diagnosis of the sixth nerve palsy, with a Kappa index of 0.925, which highlights the reliability of the results and gives favorable perspectives for further clinical application.
publishDate 2020
dc.date.issued.fl_str_mv 2020-06-24
dc.date.accessioned.fl_str_mv 2022-10-11T14:18:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv COSTA, Polyana Bezerra da. Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais. 2020. 108 f. Dissertação ( Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2020.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/4147
identifier_str_mv COSTA, Polyana Bezerra da. Metodologia computacional para auxílio no diagnóstico da paralisia do sexto nervo óptico através de vídeos digitais. 2020. 108 f. Dissertação ( Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2020.
url https://tedebc.ufma.br/jspui/handle/tede/tede/4147
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE INFORMÁTICA/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/4147/2/POLYANACOSTA.pdf
http://tedebc.ufma.br:8080/bitstream/tede/4147/1/license.txt
bitstream.checksum.fl_str_mv 82b77868c5cbd2402f1fb64b401b37ef
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926207466110976