Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo

Detalhes bibliográficos
Autor(a) principal: AZEVEDO JÚNIOR, Arnaldo Pinheiro de
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/2418
Resumo: The objective of this work is to propose a methodology based on the combination of predictive control and evolving fuzzy modeling. Predictive control is an advanced industrial technique, capable of calculating the control signal applied to the process from a prediction of its future behavior. Evolving fuzzy modeling is a model identification technique, capable of acquisition of Knowledge of the process in the form of IF-THEN fuzzy rules, as well as evolving its structure and updating its parameters. This work proposes a predictive control methodology based on an evolving fuzzy model capable of controlling multivariable processes with nonlinear dynamics. The predictive control technique used is the Practical Nonlinear Model Predictive Control, which calculates the control signal from an approximation of the non-linear prediction model of the process to be controlled. The prediction model used is obtained from an evolving version of the Gustafson-Kessel fuzzy clustering technique and the least squares recursive algorithm. The proposed controller is able to improve its tracking capabilitie of a reference trajectory, because, it evolves the structure of the non-linear prediction model from the extraction of dynamic knowledge of the inputs and outputs of the process to be controlled. In order to evaluate the proposed methodology, it was applied to the control of three non-linear benchmarking processes known in the literature.
id UFMA_4eed4ca720899003a680f120d5a80999
oai_identifier_str oai:tede2:tede/2418
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling SERRA, Ginalber Luiz de Oliveira792489343-15http://lattes.cnpq.br/0831092299374520SERRA, Ginalber Luiz de Oliveira792489343-15http://lattes.cnpq.br/0831092299374520SOUZA, Francisco das Chagas dehttp://lattes.cnpq.br/2405363087479257BARRETO, Gilmarhttp://lattes.cnpq.br/0159629841302996ROCHA FILHO, Orlando Donatohttp://lattes.cnpq.br/7455720877184126046845303-29http://lattes.cnpq.br/0278652408355467AZEVEDO JÚNIOR, Arnaldo Pinheiro de2018-10-29T22:04:40Z2018-09-25AZEVEDO JÚNIOR, Arnaldo Pinheiro de. Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo. 2018. 99f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís .https://tedebc.ufma.br/jspui/handle/tede/tede/2418The objective of this work is to propose a methodology based on the combination of predictive control and evolving fuzzy modeling. Predictive control is an advanced industrial technique, capable of calculating the control signal applied to the process from a prediction of its future behavior. Evolving fuzzy modeling is a model identification technique, capable of acquisition of Knowledge of the process in the form of IF-THEN fuzzy rules, as well as evolving its structure and updating its parameters. This work proposes a predictive control methodology based on an evolving fuzzy model capable of controlling multivariable processes with nonlinear dynamics. The predictive control technique used is the Practical Nonlinear Model Predictive Control, which calculates the control signal from an approximation of the non-linear prediction model of the process to be controlled. The prediction model used is obtained from an evolving version of the Gustafson-Kessel fuzzy clustering technique and the least squares recursive algorithm. The proposed controller is able to improve its tracking capabilitie of a reference trajectory, because, it evolves the structure of the non-linear prediction model from the extraction of dynamic knowledge of the inputs and outputs of the process to be controlled. In order to evaluate the proposed methodology, it was applied to the control of three non-linear benchmarking processes known in the literature.Este trabalho tem como objetivo propor uma metodologia baseada na combinação do controle preditivo com a modelagem fuzzy evolutiva. O controle preditivo é uma técnica industrial avançada capaz de calcular o sinal de controle aplicado ao processo a partir de uma predição do seu comportamento futuro. A modelagem fuzzy evolutiva é uma técnica de identificação de modelos capaz de adquirir conhecimento do processo na forma de regras fuzzy SE-ENTÃO, além de evoluir sua estrutura e atualizar seus parâmetros. Esse trabalho propõe uma metodologia de controle preditivo baseado em modelo fuzzy evolutivo capaz de controlar processos multivariáveis com dinâmica não linear. A técnica de controle preditivo utilizada foi o Pratical Nonlinear Model Predictive Control que é capaz de calcular o sinal de controle a partir de uma aproximação do modelo de predição não linear do processo a ser controlado. O modelo de predição utilizado é obtido a partir de uma versão evolutiva da técnica de agrupamento fuzzy Gustafson-Kessel e um algoritmo recursivo de mínimos quadrados. O controlador proposto é capaz de melhorar o rastreamento de uma trajetória de referência por evoluir a estrutura do modelo de predição não linear a partir da extração de conhecimento dinâmico das entradas e saídas do processo. Para avaliar a metodologia proposta, a mesma foi aplicada ao controle de três processos benchmarks não lineares conhecidos da literatura.Submitted by Daniella Santos (daniella.santos@ufma.br) on 2018-10-29T22:04:40Z No. of bitstreams: 1 ArnaldoPinheirodeAzevedoJúnior.pdf: 5077472 bytes, checksum: 8fcdf71139b7b7257dd3b909d20aec7f (MD5)Made available in DSpace on 2018-10-29T22:04:40Z (GMT). No. of bitstreams: 1 ArnaldoPinheirodeAzevedoJúnior.pdf: 5077472 bytes, checksum: 8fcdf71139b7b7257dd3b909d20aec7f (MD5) Previous issue date: 2018-09-25CAPESapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETControle preditivoModelagem fuzzy evolutivaPratical nonlinear model predictive controlPredictive controlEvolving fuzzy modelingPratical nonlinear model predictive controlEletrônica Industrial, Sistemas e Controles EletrônicosMetodologia de controle preditivo baseado em modelo Fuzzy evolutivoModel-Based Predictive Control Methodology Fuzzy evolutionaryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALArnaldoPinheirodeAzevedoJúnior.pdfArnaldoPinheirodeAzevedoJúnior.pdfapplication/pdf5077472http://tedebc.ufma.br:8080/bitstream/tede/2418/2/ArnaldoPinheirodeAzevedoJ%C3%BAnior.pdf8fcdf71139b7b7257dd3b909d20aec7fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/2418/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/24182018-10-29 19:04:40.961oai:tede2:tede/2418IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312018-10-29T22:04:40Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo
dc.title.alternative.eng.fl_str_mv Model-Based Predictive Control Methodology Fuzzy evolutionary
title Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo
spellingShingle Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo
AZEVEDO JÚNIOR, Arnaldo Pinheiro de
Controle preditivo
Modelagem fuzzy evolutiva
Pratical nonlinear model predictive control
Predictive control
Evolving fuzzy modeling
Pratical nonlinear model predictive control
Eletrônica Industrial, Sistemas e Controles Eletrônicos
title_short Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo
title_full Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo
title_fullStr Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo
title_full_unstemmed Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo
title_sort Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo
author AZEVEDO JÚNIOR, Arnaldo Pinheiro de
author_facet AZEVEDO JÚNIOR, Arnaldo Pinheiro de
author_role author
dc.contributor.advisor1.fl_str_mv SERRA, Ginalber Luiz de Oliveira
dc.contributor.advisor1ID.fl_str_mv 792489343-15
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0831092299374520
dc.contributor.referee1.fl_str_mv SERRA, Ginalber Luiz de Oliveira
dc.contributor.referee1ID.fl_str_mv 792489343-15
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/0831092299374520
dc.contributor.referee2.fl_str_mv SOUZA, Francisco das Chagas de
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2405363087479257
dc.contributor.referee3.fl_str_mv BARRETO, Gilmar
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/0159629841302996
dc.contributor.referee4.fl_str_mv ROCHA FILHO, Orlando Donato
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/7455720877184126
dc.contributor.authorID.fl_str_mv 046845303-29
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0278652408355467
dc.contributor.author.fl_str_mv AZEVEDO JÚNIOR, Arnaldo Pinheiro de
contributor_str_mv SERRA, Ginalber Luiz de Oliveira
SERRA, Ginalber Luiz de Oliveira
SOUZA, Francisco das Chagas de
BARRETO, Gilmar
ROCHA FILHO, Orlando Donato
dc.subject.por.fl_str_mv Controle preditivo
Modelagem fuzzy evolutiva
Pratical nonlinear model predictive control
topic Controle preditivo
Modelagem fuzzy evolutiva
Pratical nonlinear model predictive control
Predictive control
Evolving fuzzy modeling
Pratical nonlinear model predictive control
Eletrônica Industrial, Sistemas e Controles Eletrônicos
dc.subject.eng.fl_str_mv Predictive control
Evolving fuzzy modeling
Pratical nonlinear model predictive control
dc.subject.cnpq.fl_str_mv Eletrônica Industrial, Sistemas e Controles Eletrônicos
description The objective of this work is to propose a methodology based on the combination of predictive control and evolving fuzzy modeling. Predictive control is an advanced industrial technique, capable of calculating the control signal applied to the process from a prediction of its future behavior. Evolving fuzzy modeling is a model identification technique, capable of acquisition of Knowledge of the process in the form of IF-THEN fuzzy rules, as well as evolving its structure and updating its parameters. This work proposes a predictive control methodology based on an evolving fuzzy model capable of controlling multivariable processes with nonlinear dynamics. The predictive control technique used is the Practical Nonlinear Model Predictive Control, which calculates the control signal from an approximation of the non-linear prediction model of the process to be controlled. The prediction model used is obtained from an evolving version of the Gustafson-Kessel fuzzy clustering technique and the least squares recursive algorithm. The proposed controller is able to improve its tracking capabilitie of a reference trajectory, because, it evolves the structure of the non-linear prediction model from the extraction of dynamic knowledge of the inputs and outputs of the process to be controlled. In order to evaluate the proposed methodology, it was applied to the control of three non-linear benchmarking processes known in the literature.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-10-29T22:04:40Z
dc.date.issued.fl_str_mv 2018-09-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv AZEVEDO JÚNIOR, Arnaldo Pinheiro de. Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo. 2018. 99f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís .
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/2418
identifier_str_mv AZEVEDO JÚNIOR, Arnaldo Pinheiro de. Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo. 2018. 99f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís .
url https://tedebc.ufma.br/jspui/handle/tede/tede/2418
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/2418/2/ArnaldoPinheirodeAzevedoJ%C3%BAnior.pdf
http://tedebc.ufma.br:8080/bitstream/tede/2418/1/license.txt
bitstream.checksum.fl_str_mv 8fcdf71139b7b7257dd3b909d20aec7f
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926190479179776