Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/tede/2418 |
Resumo: | The objective of this work is to propose a methodology based on the combination of predictive control and evolving fuzzy modeling. Predictive control is an advanced industrial technique, capable of calculating the control signal applied to the process from a prediction of its future behavior. Evolving fuzzy modeling is a model identification technique, capable of acquisition of Knowledge of the process in the form of IF-THEN fuzzy rules, as well as evolving its structure and updating its parameters. This work proposes a predictive control methodology based on an evolving fuzzy model capable of controlling multivariable processes with nonlinear dynamics. The predictive control technique used is the Practical Nonlinear Model Predictive Control, which calculates the control signal from an approximation of the non-linear prediction model of the process to be controlled. The prediction model used is obtained from an evolving version of the Gustafson-Kessel fuzzy clustering technique and the least squares recursive algorithm. The proposed controller is able to improve its tracking capabilitie of a reference trajectory, because, it evolves the structure of the non-linear prediction model from the extraction of dynamic knowledge of the inputs and outputs of the process to be controlled. In order to evaluate the proposed methodology, it was applied to the control of three non-linear benchmarking processes known in the literature. |
id |
UFMA_4eed4ca720899003a680f120d5a80999 |
---|---|
oai_identifier_str |
oai:tede2:tede/2418 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
SERRA, Ginalber Luiz de Oliveira792489343-15http://lattes.cnpq.br/0831092299374520SERRA, Ginalber Luiz de Oliveira792489343-15http://lattes.cnpq.br/0831092299374520SOUZA, Francisco das Chagas dehttp://lattes.cnpq.br/2405363087479257BARRETO, Gilmarhttp://lattes.cnpq.br/0159629841302996ROCHA FILHO, Orlando Donatohttp://lattes.cnpq.br/7455720877184126046845303-29http://lattes.cnpq.br/0278652408355467AZEVEDO JÚNIOR, Arnaldo Pinheiro de2018-10-29T22:04:40Z2018-09-25AZEVEDO JÚNIOR, Arnaldo Pinheiro de. Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo. 2018. 99f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís .https://tedebc.ufma.br/jspui/handle/tede/tede/2418The objective of this work is to propose a methodology based on the combination of predictive control and evolving fuzzy modeling. Predictive control is an advanced industrial technique, capable of calculating the control signal applied to the process from a prediction of its future behavior. Evolving fuzzy modeling is a model identification technique, capable of acquisition of Knowledge of the process in the form of IF-THEN fuzzy rules, as well as evolving its structure and updating its parameters. This work proposes a predictive control methodology based on an evolving fuzzy model capable of controlling multivariable processes with nonlinear dynamics. The predictive control technique used is the Practical Nonlinear Model Predictive Control, which calculates the control signal from an approximation of the non-linear prediction model of the process to be controlled. The prediction model used is obtained from an evolving version of the Gustafson-Kessel fuzzy clustering technique and the least squares recursive algorithm. The proposed controller is able to improve its tracking capabilitie of a reference trajectory, because, it evolves the structure of the non-linear prediction model from the extraction of dynamic knowledge of the inputs and outputs of the process to be controlled. In order to evaluate the proposed methodology, it was applied to the control of three non-linear benchmarking processes known in the literature.Este trabalho tem como objetivo propor uma metodologia baseada na combinação do controle preditivo com a modelagem fuzzy evolutiva. O controle preditivo é uma técnica industrial avançada capaz de calcular o sinal de controle aplicado ao processo a partir de uma predição do seu comportamento futuro. A modelagem fuzzy evolutiva é uma técnica de identificação de modelos capaz de adquirir conhecimento do processo na forma de regras fuzzy SE-ENTÃO, além de evoluir sua estrutura e atualizar seus parâmetros. Esse trabalho propõe uma metodologia de controle preditivo baseado em modelo fuzzy evolutivo capaz de controlar processos multivariáveis com dinâmica não linear. A técnica de controle preditivo utilizada foi o Pratical Nonlinear Model Predictive Control que é capaz de calcular o sinal de controle a partir de uma aproximação do modelo de predição não linear do processo a ser controlado. O modelo de predição utilizado é obtido a partir de uma versão evolutiva da técnica de agrupamento fuzzy Gustafson-Kessel e um algoritmo recursivo de mínimos quadrados. O controlador proposto é capaz de melhorar o rastreamento de uma trajetória de referência por evoluir a estrutura do modelo de predição não linear a partir da extração de conhecimento dinâmico das entradas e saídas do processo. Para avaliar a metodologia proposta, a mesma foi aplicada ao controle de três processos benchmarks não lineares conhecidos da literatura.Submitted by Daniella Santos (daniella.santos@ufma.br) on 2018-10-29T22:04:40Z No. of bitstreams: 1 ArnaldoPinheirodeAzevedoJúnior.pdf: 5077472 bytes, checksum: 8fcdf71139b7b7257dd3b909d20aec7f (MD5)Made available in DSpace on 2018-10-29T22:04:40Z (GMT). No. of bitstreams: 1 ArnaldoPinheirodeAzevedoJúnior.pdf: 5077472 bytes, checksum: 8fcdf71139b7b7257dd3b909d20aec7f (MD5) Previous issue date: 2018-09-25CAPESapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETControle preditivoModelagem fuzzy evolutivaPratical nonlinear model predictive controlPredictive controlEvolving fuzzy modelingPratical nonlinear model predictive controlEletrônica Industrial, Sistemas e Controles EletrônicosMetodologia de controle preditivo baseado em modelo Fuzzy evolutivoModel-Based Predictive Control Methodology Fuzzy evolutionaryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALArnaldoPinheirodeAzevedoJúnior.pdfArnaldoPinheirodeAzevedoJúnior.pdfapplication/pdf5077472http://tedebc.ufma.br:8080/bitstream/tede/2418/2/ArnaldoPinheirodeAzevedoJ%C3%BAnior.pdf8fcdf71139b7b7257dd3b909d20aec7fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/2418/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/24182018-10-29 19:04:40.961oai:tede2:tede/2418IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312018-10-29T22:04:40Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo |
dc.title.alternative.eng.fl_str_mv |
Model-Based Predictive Control Methodology Fuzzy evolutionary |
title |
Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo |
spellingShingle |
Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo AZEVEDO JÚNIOR, Arnaldo Pinheiro de Controle preditivo Modelagem fuzzy evolutiva Pratical nonlinear model predictive control Predictive control Evolving fuzzy modeling Pratical nonlinear model predictive control Eletrônica Industrial, Sistemas e Controles Eletrônicos |
title_short |
Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo |
title_full |
Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo |
title_fullStr |
Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo |
title_full_unstemmed |
Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo |
title_sort |
Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo |
author |
AZEVEDO JÚNIOR, Arnaldo Pinheiro de |
author_facet |
AZEVEDO JÚNIOR, Arnaldo Pinheiro de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
SERRA, Ginalber Luiz de Oliveira |
dc.contributor.advisor1ID.fl_str_mv |
792489343-15 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0831092299374520 |
dc.contributor.referee1.fl_str_mv |
SERRA, Ginalber Luiz de Oliveira |
dc.contributor.referee1ID.fl_str_mv |
792489343-15 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/0831092299374520 |
dc.contributor.referee2.fl_str_mv |
SOUZA, Francisco das Chagas de |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2405363087479257 |
dc.contributor.referee3.fl_str_mv |
BARRETO, Gilmar |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/0159629841302996 |
dc.contributor.referee4.fl_str_mv |
ROCHA FILHO, Orlando Donato |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/7455720877184126 |
dc.contributor.authorID.fl_str_mv |
046845303-29 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0278652408355467 |
dc.contributor.author.fl_str_mv |
AZEVEDO JÚNIOR, Arnaldo Pinheiro de |
contributor_str_mv |
SERRA, Ginalber Luiz de Oliveira SERRA, Ginalber Luiz de Oliveira SOUZA, Francisco das Chagas de BARRETO, Gilmar ROCHA FILHO, Orlando Donato |
dc.subject.por.fl_str_mv |
Controle preditivo Modelagem fuzzy evolutiva Pratical nonlinear model predictive control |
topic |
Controle preditivo Modelagem fuzzy evolutiva Pratical nonlinear model predictive control Predictive control Evolving fuzzy modeling Pratical nonlinear model predictive control Eletrônica Industrial, Sistemas e Controles Eletrônicos |
dc.subject.eng.fl_str_mv |
Predictive control Evolving fuzzy modeling Pratical nonlinear model predictive control |
dc.subject.cnpq.fl_str_mv |
Eletrônica Industrial, Sistemas e Controles Eletrônicos |
description |
The objective of this work is to propose a methodology based on the combination of predictive control and evolving fuzzy modeling. Predictive control is an advanced industrial technique, capable of calculating the control signal applied to the process from a prediction of its future behavior. Evolving fuzzy modeling is a model identification technique, capable of acquisition of Knowledge of the process in the form of IF-THEN fuzzy rules, as well as evolving its structure and updating its parameters. This work proposes a predictive control methodology based on an evolving fuzzy model capable of controlling multivariable processes with nonlinear dynamics. The predictive control technique used is the Practical Nonlinear Model Predictive Control, which calculates the control signal from an approximation of the non-linear prediction model of the process to be controlled. The prediction model used is obtained from an evolving version of the Gustafson-Kessel fuzzy clustering technique and the least squares recursive algorithm. The proposed controller is able to improve its tracking capabilitie of a reference trajectory, because, it evolves the structure of the non-linear prediction model from the extraction of dynamic knowledge of the inputs and outputs of the process to be controlled. In order to evaluate the proposed methodology, it was applied to the control of three non-linear benchmarking processes known in the literature. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-10-29T22:04:40Z |
dc.date.issued.fl_str_mv |
2018-09-25 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
AZEVEDO JÚNIOR, Arnaldo Pinheiro de. Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo. 2018. 99f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís . |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/tede/2418 |
identifier_str_mv |
AZEVEDO JÚNIOR, Arnaldo Pinheiro de. Metodologia de controle preditivo baseado em modelo Fuzzy evolutivo. 2018. 99f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís . |
url |
https://tedebc.ufma.br/jspui/handle/tede/tede/2418 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/2418/2/ArnaldoPinheirodeAzevedoJ%C3%BAnior.pdf http://tedebc.ufma.br:8080/bitstream/tede/2418/1/license.txt |
bitstream.checksum.fl_str_mv |
8fcdf71139b7b7257dd3b909d20aec7f 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1809926190479179776 |