Planejamento de Baterias em Redes de Distribuição Inteligentes sob Incerteza

Detalhes bibliográficos
Autor(a) principal: BAPTISTA, João Eduardo Ribeiro
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/4211
Resumo: Currently, power distribution systems are undergoing a transformation towards smart grids (SGs). One of the expected characteristics of the SGs is that they incorporate distributed energy resources based on renewable sources, especially solar. The lack of simultaneity between energy production of these sources and demand may result in operational issues, from which the risk of overvoltage stands out. Due to that, it is expected that energy storage systems (ESSs) play a key role in SG, since they allow to match the imbalances between demand and energy production, thus mitigating voltage violation issues. However, these devices are expensive, and therefore, the investments in ESS must be planned to obtain the best cost-benefit relation. In this context, a battery ESS (BESS) planning methodology for distribution SGs is proposed in this work, aiming to control the risk of voltage conformity indices violation subject to uncertainty regarding load, photovoltaic generation e BESS unavailabilities due to failures of their components or in the telecommunication network (TCN) used for their control. The methodology is based in a sequence of studies that result BESSs’ number, sites and sizes and the configuration of the TCN, while also allow the planning engineer to test improvements in the solution by using on load tap changer devices or or by increasing TCN’s availability. Four subproblems are used with this purpose: an optimal BESS allocation, a method for obtaining equivalent failure rates for the battery banks, the TCN optimal design and the SG’s voltage conformity probabilistic assessment used to test solution options face to uncertainty. The first and third problems are solved by genetic algorithms, while the second and the last are based on sequential Monte Carlo simulation (MCS) techniques. Embedded in the allocation model are an optimization model used to assess the typical BESS schedules and a useful lifetime prediction model based on that scheduling. The useful lifetime prediction is also used to fit time-to-failure distributions which ate the input of the MCS that generate BESSs’ equivalent failure rates which are coherent with the expected operational conditions. On the other hand, the MCS used to assess the voltage conformity uses not only the same schedule model used by the allocation but also two optimizations models which represent real time controls for BESS rescheduling and reactive power adjustments used for corrective voltage control. Results assessed in 33 node test system shown that the proposed methodology is capable of producing planning solutions that reduce the voltage conformity indices violation risk to tolerable levels.
id UFMA_529790374a933e3a6a9e44ab276a9b6a
oai_identifier_str oai:tede2:tede/4211
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling SILVA, Maria da Guia dahttp://lattes.cnpq.br/5175196133230969RODRIGUES, Anselmo Barbosahttp://lattes.cnpq.br/1674904723665743SILVA, Maria da Guia dahttp://lattes.cnpq.br/5175196133230969RODRIGUES, Anselmo Barbosahttp://lattes.cnpq.br/1674904723665743ARAÚJO, Leandro Ramos dehttp://lattes.cnpq.br/5968839321163534CASTRO, José Filho da Costahttp://lattes.cnpq.br/4120241155931257RAPOSO, Antonio Adolpho Martinshttp://lattes.cnpq.br/0123773426402221http://lattes.cnpq.br/4005511701086390BAPTISTA, João Eduardo Ribeiro2022-10-24T12:10:19Z2022-09-16BAPTISTA, João Eduardo Ribeiro. Planejamento de baterias em redes de distribuição inteligentes sob incerteza. 2022. 203 f. Tese (Programa de Pós-Graduação em Engenharia Elétrica/CCET) - Universidade Federal do Maranhão, São Luís.https://tedebc.ufma.br/jspui/handle/tede/tede/4211Currently, power distribution systems are undergoing a transformation towards smart grids (SGs). One of the expected characteristics of the SGs is that they incorporate distributed energy resources based on renewable sources, especially solar. The lack of simultaneity between energy production of these sources and demand may result in operational issues, from which the risk of overvoltage stands out. Due to that, it is expected that energy storage systems (ESSs) play a key role in SG, since they allow to match the imbalances between demand and energy production, thus mitigating voltage violation issues. However, these devices are expensive, and therefore, the investments in ESS must be planned to obtain the best cost-benefit relation. In this context, a battery ESS (BESS) planning methodology for distribution SGs is proposed in this work, aiming to control the risk of voltage conformity indices violation subject to uncertainty regarding load, photovoltaic generation e BESS unavailabilities due to failures of their components or in the telecommunication network (TCN) used for their control. The methodology is based in a sequence of studies that result BESSs’ number, sites and sizes and the configuration of the TCN, while also allow the planning engineer to test improvements in the solution by using on load tap changer devices or or by increasing TCN’s availability. Four subproblems are used with this purpose: an optimal BESS allocation, a method for obtaining equivalent failure rates for the battery banks, the TCN optimal design and the SG’s voltage conformity probabilistic assessment used to test solution options face to uncertainty. The first and third problems are solved by genetic algorithms, while the second and the last are based on sequential Monte Carlo simulation (MCS) techniques. Embedded in the allocation model are an optimization model used to assess the typical BESS schedules and a useful lifetime prediction model based on that scheduling. The useful lifetime prediction is also used to fit time-to-failure distributions which ate the input of the MCS that generate BESSs’ equivalent failure rates which are coherent with the expected operational conditions. On the other hand, the MCS used to assess the voltage conformity uses not only the same schedule model used by the allocation but also two optimizations models which represent real time controls for BESS rescheduling and reactive power adjustments used for corrective voltage control. Results assessed in 33 node test system shown that the proposed methodology is capable of producing planning solutions that reduce the voltage conformity indices violation risk to tolerable levels.Atualmente, os sistemas de distribuição passam por um processo de transformação em redes elétricas inteligentes (REI). Uma das características esperadas de REI é que incorporem recursos energéticos distribuídos baseados em fontes renováveis, sobretudo solar. A falta de simultaneidade da produção energética destas fontes em relação à demanda pode resultar em problemas operacionais, dentre os quais destaca-se o risco de ocorrência de sobretensões. Por este motivo, espera-se que os sistemas de armazenamento de energia (SAE) desempenhem papel fundamental, pois permitem adequar os desvios entre a oferta de geração e a demanda, mitigando violações de tensão. No entanto, estes dispositivos têm alto custo, de forma que seus investimentos devem ser planejados de maneira a obter a melhor relação de custo-benefício. Neste contexto, propõe-se neste trabalho uma metodologia de planejamento de SAE à bateria (SAEB) para REI de distribuição com objetivo de controlar os riscos de violações dos índices de conformidade de tensão frente a incertezas de demanda, geração fotovoltaica e de indisponibilidades dos SAEB ocasionadas por falhas de seus componentes ou da rede de telecomunicação (RTCOM) usada nos seus controles. A metodologia se baseia em uma sequência de estudos que resulta no número, posicionamento e dimensões dos SAEB e configuração da RTCOM, além de permitir ao engenheiro de planejamento testar reforços da solução frente a incertezas por meio de investimentos em tapes comutáveis sob carga e melhorias da disponibilidade da RTCOM. Para isso utilizam-se quatro subproblemas: um problema de alocação ótima de SAEB, um método de obtenção de taxas de falha equivalentes para os bancos de baterias, o projeto ótimo da RTCOM e a avaliação probabilística da conformidade de tensão da REI utilizada para testar as soluções de planejamento frente a incertezas. O primeiro e o terceiro problemas são solucionados a partir de algoritmos genéticos, enquanto o segundo e último se baseiam em simulação Monte Carlo (SMC) sequencial. Embarcados ao modelo de alocação estão um modelo de otimização que determina os despachos típicos dos SAEB e um modelo de estimação da vida útil das baterias baseado nestes despachos. As estimativas de vida útil também são utilizadas para ajustar as distribuições dos tempos de falha das baterias que servem como parâmetros de entrada da SMC que gera taxas de falha equivalentes para os bancos de baterias coerentes com as condições operacionais esperadas. Já a SMC que avalia a conformidade de tensão utiliza tanto o mesmo modelo de despacho típico já utilizado pela alocação como também modelos de otimização que representam controles em tempo real para redespacho e para ajustes na potência reativa visando controle corretivo de tensão. Resultados avaliados em um sistema de 33 nós mostraram que a metodologia é capaz de produzir soluções de planejamento que reduzem os riscos de violações dos índices de conformidade de tensão para valores satisfatórios.Submitted by Jonathan Sousa de Almeida (jonathan.sousa@ufma.br) on 2022-10-24T12:10:19Z No. of bitstreams: 1 JOÃOEDUARDORIBEIROBAPTISTA.pdf: 4171165 bytes, checksum: 56f1a37c3be272edcc967df208f05668 (MD5)Made available in DSpace on 2022-10-24T12:10:19Z (GMT). No. of bitstreams: 1 JOÃOEDUARDORIBEIROBAPTISTA.pdf: 4171165 bytes, checksum: 56f1a37c3be272edcc967df208f05668 (MD5) Previous issue date: 2022-09-16FAPEMAapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETsistemas de distribuição inteligentes;gerenciamento de energia;controle de tensão;sistemas de armazenamento de energia;sistemas ciberfísicos;métodos probabilísticosSimulação Monte Carlo.smart distribution systems;energy management;voltage control;energy storage systems;cyber-physic systems;probabilistic methods;Monte Carlo Simulation.Engenharia ElétricaPlanejamento de Baterias em Redes de Distribuição Inteligentes sob IncertezaBattery Planning in Smart Distribution Networks under Uncertaintyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALJOÃOEDUARDORIBEIROBAPTISTA.pdfJOÃOEDUARDORIBEIROBAPTISTA.pdfapplication/pdf4171165http://tedebc.ufma.br:8080/bitstream/tede/4211/2/JO%C3%83OEDUARDORIBEIROBAPTISTA.pdf56f1a37c3be272edcc967df208f05668MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/4211/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/42112022-10-24 09:10:19.073oai:tede2:tede/4211IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312022-10-24T12:10:19Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Planejamento de Baterias em Redes de Distribuição Inteligentes sob Incerteza
dc.title.alternative.eng.fl_str_mv Battery Planning in Smart Distribution Networks under Uncertainty
title Planejamento de Baterias em Redes de Distribuição Inteligentes sob Incerteza
spellingShingle Planejamento de Baterias em Redes de Distribuição Inteligentes sob Incerteza
BAPTISTA, João Eduardo Ribeiro
sistemas de distribuição inteligentes;
gerenciamento de energia;
controle de tensão;
sistemas de armazenamento de energia;
sistemas ciberfísicos;
métodos probabilísticos
Simulação Monte Carlo.
smart distribution systems;
energy management;
voltage control;
energy storage systems;
cyber-physic systems;
probabilistic methods;
Monte Carlo Simulation.
Engenharia Elétrica
title_short Planejamento de Baterias em Redes de Distribuição Inteligentes sob Incerteza
title_full Planejamento de Baterias em Redes de Distribuição Inteligentes sob Incerteza
title_fullStr Planejamento de Baterias em Redes de Distribuição Inteligentes sob Incerteza
title_full_unstemmed Planejamento de Baterias em Redes de Distribuição Inteligentes sob Incerteza
title_sort Planejamento de Baterias em Redes de Distribuição Inteligentes sob Incerteza
author BAPTISTA, João Eduardo Ribeiro
author_facet BAPTISTA, João Eduardo Ribeiro
author_role author
dc.contributor.advisor1.fl_str_mv SILVA, Maria da Guia da
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5175196133230969
dc.contributor.advisor-co1.fl_str_mv RODRIGUES, Anselmo Barbosa
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/1674904723665743
dc.contributor.referee1.fl_str_mv SILVA, Maria da Guia da
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/5175196133230969
dc.contributor.referee2.fl_str_mv RODRIGUES, Anselmo Barbosa
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/1674904723665743
dc.contributor.referee3.fl_str_mv ARAÚJO, Leandro Ramos de
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/5968839321163534
dc.contributor.referee4.fl_str_mv CASTRO, José Filho da Costa
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/4120241155931257
dc.contributor.referee5.fl_str_mv RAPOSO, Antonio Adolpho Martins
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/0123773426402221
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4005511701086390
dc.contributor.author.fl_str_mv BAPTISTA, João Eduardo Ribeiro
contributor_str_mv SILVA, Maria da Guia da
RODRIGUES, Anselmo Barbosa
SILVA, Maria da Guia da
RODRIGUES, Anselmo Barbosa
ARAÚJO, Leandro Ramos de
CASTRO, José Filho da Costa
RAPOSO, Antonio Adolpho Martins
dc.subject.por.fl_str_mv sistemas de distribuição inteligentes;
gerenciamento de energia;
controle de tensão;
sistemas de armazenamento de energia;
sistemas ciberfísicos;
métodos probabilísticos
Simulação Monte Carlo.
topic sistemas de distribuição inteligentes;
gerenciamento de energia;
controle de tensão;
sistemas de armazenamento de energia;
sistemas ciberfísicos;
métodos probabilísticos
Simulação Monte Carlo.
smart distribution systems;
energy management;
voltage control;
energy storage systems;
cyber-physic systems;
probabilistic methods;
Monte Carlo Simulation.
Engenharia Elétrica
dc.subject.eng.fl_str_mv smart distribution systems;
energy management;
voltage control;
energy storage systems;
cyber-physic systems;
probabilistic methods;
Monte Carlo Simulation.
dc.subject.cnpq.fl_str_mv Engenharia Elétrica
description Currently, power distribution systems are undergoing a transformation towards smart grids (SGs). One of the expected characteristics of the SGs is that they incorporate distributed energy resources based on renewable sources, especially solar. The lack of simultaneity between energy production of these sources and demand may result in operational issues, from which the risk of overvoltage stands out. Due to that, it is expected that energy storage systems (ESSs) play a key role in SG, since they allow to match the imbalances between demand and energy production, thus mitigating voltage violation issues. However, these devices are expensive, and therefore, the investments in ESS must be planned to obtain the best cost-benefit relation. In this context, a battery ESS (BESS) planning methodology for distribution SGs is proposed in this work, aiming to control the risk of voltage conformity indices violation subject to uncertainty regarding load, photovoltaic generation e BESS unavailabilities due to failures of their components or in the telecommunication network (TCN) used for their control. The methodology is based in a sequence of studies that result BESSs’ number, sites and sizes and the configuration of the TCN, while also allow the planning engineer to test improvements in the solution by using on load tap changer devices or or by increasing TCN’s availability. Four subproblems are used with this purpose: an optimal BESS allocation, a method for obtaining equivalent failure rates for the battery banks, the TCN optimal design and the SG’s voltage conformity probabilistic assessment used to test solution options face to uncertainty. The first and third problems are solved by genetic algorithms, while the second and the last are based on sequential Monte Carlo simulation (MCS) techniques. Embedded in the allocation model are an optimization model used to assess the typical BESS schedules and a useful lifetime prediction model based on that scheduling. The useful lifetime prediction is also used to fit time-to-failure distributions which ate the input of the MCS that generate BESSs’ equivalent failure rates which are coherent with the expected operational conditions. On the other hand, the MCS used to assess the voltage conformity uses not only the same schedule model used by the allocation but also two optimizations models which represent real time controls for BESS rescheduling and reactive power adjustments used for corrective voltage control. Results assessed in 33 node test system shown that the proposed methodology is capable of producing planning solutions that reduce the voltage conformity indices violation risk to tolerable levels.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-10-24T12:10:19Z
dc.date.issued.fl_str_mv 2022-09-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BAPTISTA, João Eduardo Ribeiro. Planejamento de baterias em redes de distribuição inteligentes sob incerteza. 2022. 203 f. Tese (Programa de Pós-Graduação em Engenharia Elétrica/CCET) - Universidade Federal do Maranhão, São Luís.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/4211
identifier_str_mv BAPTISTA, João Eduardo Ribeiro. Planejamento de baterias em redes de distribuição inteligentes sob incerteza. 2022. 203 f. Tese (Programa de Pós-Graduação em Engenharia Elétrica/CCET) - Universidade Federal do Maranhão, São Luís.
url https://tedebc.ufma.br/jspui/handle/tede/tede/4211
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/4211/2/JO%C3%83OEDUARDORIBEIROBAPTISTA.pdf
http://tedebc.ufma.br:8080/bitstream/tede/4211/1/license.txt
bitstream.checksum.fl_str_mv 56f1a37c3be272edcc967df208f05668
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926208356352000