Detecção e classificação de perturbações no meio aquático via aprendizado profundo e rede neural artificial integrada à métodos estatísticos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/tede/4645 |
Resumo: | Due to the growth of oil exploration and transportation, the risk of accidents in the aquatic environment also increases, making it necessary to develop methods and systems that created to reduce the damage caused by industrial activities to the environment. In this dissertation a methodology for detection and classification of disturbances in the aquatic environment is presented. In order to contribute to a solution to the environmental issue and promote scientific and technological advancement through the application of artificial intelligence and statistical methods. Specifically, to detect oil slicks on the surface of the ocean. The developed methodology is based on deep learning approaches, artificial neural network and statistical methods. Based on these approaches, two algorithms were combined for the critic module (performs all exploratory data analysis) of a decision-making system. The first model is a perceptron-type artificial neural network that is integrated with statistical methods, in this case the linear discriminant analysis (LDA) algorithm that defines a discriminant function to estimate the class of images, and the perceptron-type neural network of multiple layers (MLP) to dectact/classify the information, called LDA-MLP model. The second model is just a neural network that uses deep learning, Unet architecture and is called AP-Unet model. To evaluate the performance of ocean oil slick classifieds, information from a Synthetic Aperture Radar (SAR) processed by LDA-MLP and AP-Unet classifieds was used. The database used has 1112 images, 880 of which show oil slicks on the ocean surface, this database is divided into a training set with 1002 images, and a test set with 110 images. With the results obtained and their analysis carried out, it is concluded that the methods of detecting oil slicks on the surface of the ocean, standards, are able to detect oil slicks with good precision, comparing the two methods observing that the two models showed very close accuracy. |
id |
UFMA_5ffc8fa2186a6409249226e91055ccd2 |
---|---|
oai_identifier_str |
oai:tede2:tede/4645 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
FONSECA NETO, João Viana dahttp://lattes.cnpq.br/0029055473709795BARROS FILHO, Allan Kardec Duailibehttp://lattes.cnpq.br/0492330410079141FREIRE, Raimundo Carlos Silvériohttp://lattes.cnpq.br/4016576596215504FONSECA NETO, João Viana dahttp://lattes.cnpq.br/0029055473709795http://lattes.cnpq.br/2859371725899692SOUSA, Monik Silva2023-04-17T17:40:34Z2023-02-10SOUSA, Monik Silva. Detecção e classificação de perturbações no meio aquático via aprendizado profundo e rede neural artificial integrada à métodos estatísticos. 2023. 94 f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2023.https://tedebc.ufma.br/jspui/handle/tede/tede/4645Due to the growth of oil exploration and transportation, the risk of accidents in the aquatic environment also increases, making it necessary to develop methods and systems that created to reduce the damage caused by industrial activities to the environment. In this dissertation a methodology for detection and classification of disturbances in the aquatic environment is presented. In order to contribute to a solution to the environmental issue and promote scientific and technological advancement through the application of artificial intelligence and statistical methods. Specifically, to detect oil slicks on the surface of the ocean. The developed methodology is based on deep learning approaches, artificial neural network and statistical methods. Based on these approaches, two algorithms were combined for the critic module (performs all exploratory data analysis) of a decision-making system. The first model is a perceptron-type artificial neural network that is integrated with statistical methods, in this case the linear discriminant analysis (LDA) algorithm that defines a discriminant function to estimate the class of images, and the perceptron-type neural network of multiple layers (MLP) to dectact/classify the information, called LDA-MLP model. The second model is just a neural network that uses deep learning, Unet architecture and is called AP-Unet model. To evaluate the performance of ocean oil slick classifieds, information from a Synthetic Aperture Radar (SAR) processed by LDA-MLP and AP-Unet classifieds was used. The database used has 1112 images, 880 of which show oil slicks on the ocean surface, this database is divided into a training set with 1002 images, and a test set with 110 images. With the results obtained and their analysis carried out, it is concluded that the methods of detecting oil slicks on the surface of the ocean, standards, are able to detect oil slicks with good precision, comparing the two methods observing that the two models showed very close accuracy.Devido ao crescimento da exploração e do transporte do petróleo aumenta-se também os riscos de acidentes no meio aquático, tornando-se necessário o desenvolvimento de métodos e sistemas que contribuem para redução dos danos causados pelas atividades industriais ao meio ambiente. Nesta dissertação é apresentada uma metodologia para detecção e classificação de perturbações no meio aquático. No intuito de contribuir com uma solução para a questão ambiental e promover o avanço cientítico e tecnlógico pela aplicação de metodos de inteligência artifical e estatística. Especificamente, para detectar manchas de óleo na superfície do oceano. A metodologia desenvolvida basea-se nas abordagens de aprendizado profundo, rede neural artificial e métodos estatísticos. A partir destas abordagens foram desenvolvidos dois algoritmos para o módulo do crítico (realiza toda a análise exploratória dos dados) de um sistema de tomada de decisão. O primeiro modelo é uma rede neural artificial do tipo perceptron que é integrada a métodos estatísticos, no caso, o algoritmo da análise do discriminante linear (LDA) que define uma função discriminante para estimar a classe das imagens, a rede neural do tipo perceptron de múltipla camadas (MLP) para dectar/classificar a informação, denominado modelo LDA-MLP. O segundo modelo é uma rede neural que utiliza deep learning, arquitetura Unet e é denominado modelo AP-Unet. Para avaliar o desempenho dos classificadores de detecção de manchas de petróleo no oceano, foram utilizadas informação oriundas de um Radar de Abertura Sintética (Synthetic Aperture Radar – SAR) processadas pelos classificadores LDA-MLP e AP-Unet. A base de dados utilizada possui 1112 imagens, sendo 880 imagens que apresentam manchas de óleo na superfície do oceano, esse banco de dados é dividido em conjunto de treinamento com 1002 imagens, conjunto de testes com 110 imagens. De posse dos resultados obtidos e realizada a sua análise, conclui-se que os métodos de detecção de mancha de óleo na superfície do oceano propostos conseguem detectar as manchas de óleo com uma boa precisão, comparando os dois métodos observa-se que os dois modelos apresentaram uma precisão muito próxima.Submitted by Daniella Santos (daniella.santos@ufma.br) on 2023-04-17T17:40:34Z No. of bitstreams: 1 Monik_Silva_Sousa.pdf: 4221334 bytes, checksum: a4f2dfecdd7fd91518506ba8a3d15e5f (MD5)Made available in DSpace on 2023-04-17T17:40:34Z (GMT). No. of bitstreams: 1 Monik_Silva_Sousa.pdf: 4221334 bytes, checksum: a4f2dfecdd7fd91518506ba8a3d15e5f (MD5) Previous issue date: 2023-02-10application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETanálise discriminante linear;detecção de manchas de óleo;machine learning;rede neural artificial;deep learning;linear discriminant analysis;oil stain detection;machine learning;artificial neural network;deep learning.Engenharia ElétricaDetecção e classificação de perturbações no meio aquático via aprendizado profundo e rede neural artificial integrada à métodos estatísticosDetection and classification of disturbances in the aquatic environment via deep learning and artificial neural network integrated with statistical methodsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALMonik_Silva_Sousa.pdfMonik_Silva_Sousa.pdfapplication/pdf4221334http://tedebc.ufma.br:8080/bitstream/tede/4645/2/Monik_Silva_Sousa.pdfa4f2dfecdd7fd91518506ba8a3d15e5fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/4645/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/46452023-04-17 14:40:34.82oai:tede2:tede/4645IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312023-04-17T17:40:34Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Detecção e classificação de perturbações no meio aquático via aprendizado profundo e rede neural artificial integrada à métodos estatísticos |
dc.title.alternative.eng.fl_str_mv |
Detection and classification of disturbances in the aquatic environment via deep learning and artificial neural network integrated with statistical methods |
title |
Detecção e classificação de perturbações no meio aquático via aprendizado profundo e rede neural artificial integrada à métodos estatísticos |
spellingShingle |
Detecção e classificação de perturbações no meio aquático via aprendizado profundo e rede neural artificial integrada à métodos estatísticos SOUSA, Monik Silva análise discriminante linear; detecção de manchas de óleo; machine learning; rede neural artificial; deep learning; linear discriminant analysis; oil stain detection; machine learning; artificial neural network; deep learning. Engenharia Elétrica |
title_short |
Detecção e classificação de perturbações no meio aquático via aprendizado profundo e rede neural artificial integrada à métodos estatísticos |
title_full |
Detecção e classificação de perturbações no meio aquático via aprendizado profundo e rede neural artificial integrada à métodos estatísticos |
title_fullStr |
Detecção e classificação de perturbações no meio aquático via aprendizado profundo e rede neural artificial integrada à métodos estatísticos |
title_full_unstemmed |
Detecção e classificação de perturbações no meio aquático via aprendizado profundo e rede neural artificial integrada à métodos estatísticos |
title_sort |
Detecção e classificação de perturbações no meio aquático via aprendizado profundo e rede neural artificial integrada à métodos estatísticos |
author |
SOUSA, Monik Silva |
author_facet |
SOUSA, Monik Silva |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
FONSECA NETO, João Viana da |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0029055473709795 |
dc.contributor.referee1.fl_str_mv |
BARROS FILHO, Allan Kardec Duailibe |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/0492330410079141 |
dc.contributor.referee2.fl_str_mv |
FREIRE, Raimundo Carlos Silvério |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/4016576596215504 |
dc.contributor.referee3.fl_str_mv |
FONSECA NETO, João Viana da |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/0029055473709795 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2859371725899692 |
dc.contributor.author.fl_str_mv |
SOUSA, Monik Silva |
contributor_str_mv |
FONSECA NETO, João Viana da BARROS FILHO, Allan Kardec Duailibe FREIRE, Raimundo Carlos Silvério FONSECA NETO, João Viana da |
dc.subject.por.fl_str_mv |
análise discriminante linear; detecção de manchas de óleo; machine learning; rede neural artificial; deep learning; |
topic |
análise discriminante linear; detecção de manchas de óleo; machine learning; rede neural artificial; deep learning; linear discriminant analysis; oil stain detection; machine learning; artificial neural network; deep learning. Engenharia Elétrica |
dc.subject.eng.fl_str_mv |
linear discriminant analysis; oil stain detection; machine learning; artificial neural network; deep learning. |
dc.subject.cnpq.fl_str_mv |
Engenharia Elétrica |
description |
Due to the growth of oil exploration and transportation, the risk of accidents in the aquatic environment also increases, making it necessary to develop methods and systems that created to reduce the damage caused by industrial activities to the environment. In this dissertation a methodology for detection and classification of disturbances in the aquatic environment is presented. In order to contribute to a solution to the environmental issue and promote scientific and technological advancement through the application of artificial intelligence and statistical methods. Specifically, to detect oil slicks on the surface of the ocean. The developed methodology is based on deep learning approaches, artificial neural network and statistical methods. Based on these approaches, two algorithms were combined for the critic module (performs all exploratory data analysis) of a decision-making system. The first model is a perceptron-type artificial neural network that is integrated with statistical methods, in this case the linear discriminant analysis (LDA) algorithm that defines a discriminant function to estimate the class of images, and the perceptron-type neural network of multiple layers (MLP) to dectact/classify the information, called LDA-MLP model. The second model is just a neural network that uses deep learning, Unet architecture and is called AP-Unet model. To evaluate the performance of ocean oil slick classifieds, information from a Synthetic Aperture Radar (SAR) processed by LDA-MLP and AP-Unet classifieds was used. The database used has 1112 images, 880 of which show oil slicks on the ocean surface, this database is divided into a training set with 1002 images, and a test set with 110 images. With the results obtained and their analysis carried out, it is concluded that the methods of detecting oil slicks on the surface of the ocean, standards, are able to detect oil slicks with good precision, comparing the two methods observing that the two models showed very close accuracy. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-04-17T17:40:34Z |
dc.date.issued.fl_str_mv |
2023-02-10 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SOUSA, Monik Silva. Detecção e classificação de perturbações no meio aquático via aprendizado profundo e rede neural artificial integrada à métodos estatísticos. 2023. 94 f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2023. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/tede/4645 |
identifier_str_mv |
SOUSA, Monik Silva. Detecção e classificação de perturbações no meio aquático via aprendizado profundo e rede neural artificial integrada à métodos estatísticos. 2023. 94 f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2023. |
url |
https://tedebc.ufma.br/jspui/handle/tede/tede/4645 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/4645/2/Monik_Silva_Sousa.pdf http://tedebc.ufma.br:8080/bitstream/tede/4645/1/license.txt |
bitstream.checksum.fl_str_mv |
a4f2dfecdd7fd91518506ba8a3d15e5f 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1809926213296193536 |