Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/tede/3841 |
Resumo: | Pupillometry is the measurement of pupillary diameter used in some medical procedures to evaluate reactions of pupillary dilatation and constriction. Those reactions can be involuntary when it is caused by the Central Nervous System (CNS), or provoked by the light reflections. The iris and the pupil compose the ocular globe that is responsible for forming human vision. The iris is the biggest circumference with pigmented textures, which allows the formation of the color of the eyes. The pupil is the smallest circumference and it is in the internal region of the iris; the pupil is characterized by which allows the entry of light to form the vision. This region presents two common responses (states) through externals (reflections of light) and internals stimulus (Central Nervous System). The dilatation state occurs when there is an extension of the pupil size, in a constriction state. On the other hand, its size reduces. Understanding these pupillary reactions has been coming common among the researchers of neuroscience and cognitive psychology since it allows the identification of neurologic disorders. Therefore, pupillometry has been becoming a popular strategy in clinic pre-operatory processes, and in the identification of neurologic disorders in some individuals. Considering this context, this work aims to propose a computational method able to detect and measure pupil size, based on processing digital image techniques and machine learning to assist cognitive psychologists and neuroscience researchers to understand and identify neurologic diseases through pupillary reactions. The method of planning a multitasking neural network architecture with the inclusion of attention mechanisms, called At-Unet, to segment the iris and pupil region with the intention of obtaining the pupil diameter, and calculate the dilation factor that defines the state of the pupil in dilated or contracted. This method achieved 97.17% of Dice coefficient, from the cross experiment, so the type of pupil state estimated has an average error of the dilation factor of 0.0167. |
id |
UFMA_74e332385eb2699a4179476fa4e1d226 |
---|---|
oai_identifier_str |
oai:tede2:tede/3841 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
PAIVA, Anselmo Cardosohttp://lattes.cnpq.br/6446831084215512SILVA, Aristófanes Correahttp://lattes.cnpq.br/2446301582459104PAIVA, Anselmo Cardosohttp://lattes.cnpq.br/6446831084215512SILVA, Aristófanes Corrêahttp://lattes.cnpq.br/2446301582459104ALMEIDA, João Dallyson Sousa dehttp://lattes.cnpq.br/6047330108382641SOARES, André Castelo Brancohttp://lattes.cnpq.br/4545154317245176http://lattes.cnpq.br/3550961999650779RODRIGUES, Fredson Costa2022-07-12T11:52:04Z2022-06-17RODRIGUES, Fredson Costa. Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas. 2022. 89 f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2022.https://tedebc.ufma.br/jspui/handle/tede/tede/3841Pupillometry is the measurement of pupillary diameter used in some medical procedures to evaluate reactions of pupillary dilatation and constriction. Those reactions can be involuntary when it is caused by the Central Nervous System (CNS), or provoked by the light reflections. The iris and the pupil compose the ocular globe that is responsible for forming human vision. The iris is the biggest circumference with pigmented textures, which allows the formation of the color of the eyes. The pupil is the smallest circumference and it is in the internal region of the iris; the pupil is characterized by which allows the entry of light to form the vision. This region presents two common responses (states) through externals (reflections of light) and internals stimulus (Central Nervous System). The dilatation state occurs when there is an extension of the pupil size, in a constriction state. On the other hand, its size reduces. Understanding these pupillary reactions has been coming common among the researchers of neuroscience and cognitive psychology since it allows the identification of neurologic disorders. Therefore, pupillometry has been becoming a popular strategy in clinic pre-operatory processes, and in the identification of neurologic disorders in some individuals. Considering this context, this work aims to propose a computational method able to detect and measure pupil size, based on processing digital image techniques and machine learning to assist cognitive psychologists and neuroscience researchers to understand and identify neurologic diseases through pupillary reactions. The method of planning a multitasking neural network architecture with the inclusion of attention mechanisms, called At-Unet, to segment the iris and pupil region with the intention of obtaining the pupil diameter, and calculate the dilation factor that defines the state of the pupil in dilated or contracted. This method achieved 97.17% of Dice coefficient, from the cross experiment, so the type of pupil state estimated has an average error of the dilation factor of 0.0167.A pupilometria é a medição do diâmetro pupilar, usada em alguns procedimentos médicos a fim de avaliar as reações de dilatação e constrição da pupila. Essas reações podem ser involuntárias causadas pelo Sistema Nervoso Central (SNC) ou provocadas, por meio dos reflexos de luz. A íris e pupila fazem parte do globo ocular responsável por formar a visão humana. A íris é a circunferência maior que contém texturas pigmentadas, permitindo a formação da cor dos olhos. A pupila é a circunferência menor, e se encontra na região interna da íris, e é caracterizada por permitir a entrada da luz para formar a visão. Essa região apresenta duas respostas (estados) comuns mediante estímulos externos (Reflexos de luz) e internos (Sistema Nervoso Central). O estado de dilatação ocorre quando há o aumento do tamanho da pupila, enquanto que no estado de constrição seu tamanho diminui. Entender essas reações pupilares, tem se tornado comum entre os pesquisadores da neurociência e psicologia cognitiva, pois permite a identificação de distúrbios neurológicos por meio dessas reações pupilares. Dessa forma a pupilometria tem se tornado uma estratégia comumente usada em processos clínicos pré-operatórios, e na identificação de distúrbios neurológicos em indivíduos. Neste contexto propõe-se um método computacional, para detectar e medir o tamanho da pupila, baseado em técnicas de processamento de imagens digitais e aprendizado de máquina, a fim de auxiliar psicólogos cognitivos e pesquisadores da neurociência a entender e identificar doenças neurológicas por meio das reações pupilares. O método propõe uma arquitetura de rede neural de multitarefas com a inclusão de mecanismos de atenção, denominado de At-Unet, para segmentar a região da íris e pupila com a intenção de obter o diâmetro da pupila, e calcular o fator de dilatação que define o estado da pupila em dilatada ou contraída. Esse método conseguiu 97,17% de coeficiente de Dice, a partir do experimento de validação cruzada, dessa forma o tipo de estado pupilar estimado apresenta um erro médio do fator de dilatação de 0.0167.Submitted by Jonathan Sousa de Almeida (jonathan.sousa@ufma.br) on 2022-07-12T11:52:04Z No. of bitstreams: 1 FREDSONCOSTARODRIGUES.pdf: 8635456 bytes, checksum: 46e9d920d4ba309e852b3b14bee3f704 (MD5)Made available in DSpace on 2022-07-12T11:52:04Z (GMT). No. of bitstreams: 1 FREDSONCOSTARODRIGUES.pdf: 8635456 bytes, checksum: 46e9d920d4ba309e852b3b14bee3f704 (MD5) Previous issue date: 2022-06-17FAPEMAapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETAt-Unet;constrição pupilar;dilatação pupilar;Rede Neural de Multitarefas;segmentação.At-Unet;contriction pupil;dilatation pupil;Neural Network of Multitasking;segmentation.Ciência da ComputaçãoAprendizado profundo para a detecção de pupilas dilatadas ou contraídasDeep learning for the detection of dilated or contracted pupilsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALFREDSONCOSTARODRIGUES.pdfFREDSONCOSTARODRIGUES.pdfapplication/pdf8635456http://tedebc.ufma.br:8080/bitstream/tede/3841/2/FREDSONCOSTARODRIGUES.pdf46e9d920d4ba309e852b3b14bee3f704MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/3841/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/38412023-05-16 14:14:08.333oai:tede2:tede/3841IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312023-05-16T17:14:08Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas |
dc.title.alternative.eng.fl_str_mv |
Deep learning for the detection of dilated or contracted pupils |
title |
Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas |
spellingShingle |
Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas RODRIGUES, Fredson Costa At-Unet; constrição pupilar; dilatação pupilar; Rede Neural de Multitarefas; segmentação. At-Unet; contriction pupil; dilatation pupil; Neural Network of Multitasking; segmentation. Ciência da Computação |
title_short |
Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas |
title_full |
Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas |
title_fullStr |
Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas |
title_full_unstemmed |
Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas |
title_sort |
Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas |
author |
RODRIGUES, Fredson Costa |
author_facet |
RODRIGUES, Fredson Costa |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
PAIVA, Anselmo Cardoso |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6446831084215512 |
dc.contributor.advisor-co1.fl_str_mv |
SILVA, Aristófanes Correa |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/2446301582459104 |
dc.contributor.referee1.fl_str_mv |
PAIVA, Anselmo Cardoso |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/6446831084215512 |
dc.contributor.referee2.fl_str_mv |
SILVA, Aristófanes Corrêa |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2446301582459104 |
dc.contributor.referee3.fl_str_mv |
ALMEIDA, João Dallyson Sousa de |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/6047330108382641 |
dc.contributor.referee4.fl_str_mv |
SOARES, André Castelo Branco |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/4545154317245176 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3550961999650779 |
dc.contributor.author.fl_str_mv |
RODRIGUES, Fredson Costa |
contributor_str_mv |
PAIVA, Anselmo Cardoso SILVA, Aristófanes Correa PAIVA, Anselmo Cardoso SILVA, Aristófanes Corrêa ALMEIDA, João Dallyson Sousa de SOARES, André Castelo Branco |
dc.subject.por.fl_str_mv |
At-Unet; constrição pupilar; dilatação pupilar; Rede Neural de Multitarefas; segmentação. |
topic |
At-Unet; constrição pupilar; dilatação pupilar; Rede Neural de Multitarefas; segmentação. At-Unet; contriction pupil; dilatation pupil; Neural Network of Multitasking; segmentation. Ciência da Computação |
dc.subject.eng.fl_str_mv |
At-Unet; contriction pupil; dilatation pupil; Neural Network of Multitasking; segmentation. |
dc.subject.cnpq.fl_str_mv |
Ciência da Computação |
description |
Pupillometry is the measurement of pupillary diameter used in some medical procedures to evaluate reactions of pupillary dilatation and constriction. Those reactions can be involuntary when it is caused by the Central Nervous System (CNS), or provoked by the light reflections. The iris and the pupil compose the ocular globe that is responsible for forming human vision. The iris is the biggest circumference with pigmented textures, which allows the formation of the color of the eyes. The pupil is the smallest circumference and it is in the internal region of the iris; the pupil is characterized by which allows the entry of light to form the vision. This region presents two common responses (states) through externals (reflections of light) and internals stimulus (Central Nervous System). The dilatation state occurs when there is an extension of the pupil size, in a constriction state. On the other hand, its size reduces. Understanding these pupillary reactions has been coming common among the researchers of neuroscience and cognitive psychology since it allows the identification of neurologic disorders. Therefore, pupillometry has been becoming a popular strategy in clinic pre-operatory processes, and in the identification of neurologic disorders in some individuals. Considering this context, this work aims to propose a computational method able to detect and measure pupil size, based on processing digital image techniques and machine learning to assist cognitive psychologists and neuroscience researchers to understand and identify neurologic diseases through pupillary reactions. The method of planning a multitasking neural network architecture with the inclusion of attention mechanisms, called At-Unet, to segment the iris and pupil region with the intention of obtaining the pupil diameter, and calculate the dilation factor that defines the state of the pupil in dilated or contracted. This method achieved 97.17% of Dice coefficient, from the cross experiment, so the type of pupil state estimated has an average error of the dilation factor of 0.0167. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-07-12T11:52:04Z |
dc.date.issued.fl_str_mv |
2022-06-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
RODRIGUES, Fredson Costa. Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas. 2022. 89 f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2022. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/tede/3841 |
identifier_str_mv |
RODRIGUES, Fredson Costa. Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas. 2022. 89 f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2022. |
url |
https://tedebc.ufma.br/jspui/handle/tede/tede/3841 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/3841/2/FREDSONCOSTARODRIGUES.pdf http://tedebc.ufma.br:8080/bitstream/tede/3841/1/license.txt |
bitstream.checksum.fl_str_mv |
46e9d920d4ba309e852b3b14bee3f704 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1809926203905146880 |