Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas

Detalhes bibliográficos
Autor(a) principal: RODRIGUES, Fredson Costa
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/3841
Resumo: Pupillometry is the measurement of pupillary diameter used in some medical procedures to evaluate reactions of pupillary dilatation and constriction. Those reactions can be involuntary when it is caused by the Central Nervous System (CNS), or provoked by the light reflections. The iris and the pupil compose the ocular globe that is responsible for forming human vision. The iris is the biggest circumference with pigmented textures, which allows the formation of the color of the eyes. The pupil is the smallest circumference and it is in the internal region of the iris; the pupil is characterized by which allows the entry of light to form the vision. This region presents two common responses (states) through externals (reflections of light) and internals stimulus (Central Nervous System). The dilatation state occurs when there is an extension of the pupil size, in a constriction state. On the other hand, its size reduces. Understanding these pupillary reactions has been coming common among the researchers of neuroscience and cognitive psychology since it allows the identification of neurologic disorders. Therefore, pupillometry has been becoming a popular strategy in clinic pre-operatory processes, and in the identification of neurologic disorders in some individuals. Considering this context, this work aims to propose a computational method able to detect and measure pupil size, based on processing digital image techniques and machine learning to assist cognitive psychologists and neuroscience researchers to understand and identify neurologic diseases through pupillary reactions. The method of planning a multitasking neural network architecture with the inclusion of attention mechanisms, called At-Unet, to segment the iris and pupil region with the intention of obtaining the pupil diameter, and calculate the dilation factor that defines the state of the pupil in dilated or contracted. This method achieved 97.17% of Dice coefficient, from the cross experiment, so the type of pupil state estimated has an average error of the dilation factor of 0.0167.
id UFMA_74e332385eb2699a4179476fa4e1d226
oai_identifier_str oai:tede2:tede/3841
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling PAIVA, Anselmo Cardosohttp://lattes.cnpq.br/6446831084215512SILVA, Aristófanes Correahttp://lattes.cnpq.br/2446301582459104PAIVA, Anselmo Cardosohttp://lattes.cnpq.br/6446831084215512SILVA, Aristófanes Corrêahttp://lattes.cnpq.br/2446301582459104ALMEIDA, João Dallyson Sousa dehttp://lattes.cnpq.br/6047330108382641SOARES, André Castelo Brancohttp://lattes.cnpq.br/4545154317245176http://lattes.cnpq.br/3550961999650779RODRIGUES, Fredson Costa2022-07-12T11:52:04Z2022-06-17RODRIGUES, Fredson Costa. Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas. 2022. 89 f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2022.https://tedebc.ufma.br/jspui/handle/tede/tede/3841Pupillometry is the measurement of pupillary diameter used in some medical procedures to evaluate reactions of pupillary dilatation and constriction. Those reactions can be involuntary when it is caused by the Central Nervous System (CNS), or provoked by the light reflections. The iris and the pupil compose the ocular globe that is responsible for forming human vision. The iris is the biggest circumference with pigmented textures, which allows the formation of the color of the eyes. The pupil is the smallest circumference and it is in the internal region of the iris; the pupil is characterized by which allows the entry of light to form the vision. This region presents two common responses (states) through externals (reflections of light) and internals stimulus (Central Nervous System). The dilatation state occurs when there is an extension of the pupil size, in a constriction state. On the other hand, its size reduces. Understanding these pupillary reactions has been coming common among the researchers of neuroscience and cognitive psychology since it allows the identification of neurologic disorders. Therefore, pupillometry has been becoming a popular strategy in clinic pre-operatory processes, and in the identification of neurologic disorders in some individuals. Considering this context, this work aims to propose a computational method able to detect and measure pupil size, based on processing digital image techniques and machine learning to assist cognitive psychologists and neuroscience researchers to understand and identify neurologic diseases through pupillary reactions. The method of planning a multitasking neural network architecture with the inclusion of attention mechanisms, called At-Unet, to segment the iris and pupil region with the intention of obtaining the pupil diameter, and calculate the dilation factor that defines the state of the pupil in dilated or contracted. This method achieved 97.17% of Dice coefficient, from the cross experiment, so the type of pupil state estimated has an average error of the dilation factor of 0.0167.A pupilometria é a medição do diâmetro pupilar, usada em alguns procedimentos médicos a fim de avaliar as reações de dilatação e constrição da pupila. Essas reações podem ser involuntárias causadas pelo Sistema Nervoso Central (SNC) ou provocadas, por meio dos reflexos de luz. A íris e pupila fazem parte do globo ocular responsável por formar a visão humana. A íris é a circunferência maior que contém texturas pigmentadas, permitindo a formação da cor dos olhos. A pupila é a circunferência menor, e se encontra na região interna da íris, e é caracterizada por permitir a entrada da luz para formar a visão. Essa região apresenta duas respostas (estados) comuns mediante estímulos externos (Reflexos de luz) e internos (Sistema Nervoso Central). O estado de dilatação ocorre quando há o aumento do tamanho da pupila, enquanto que no estado de constrição seu tamanho diminui. Entender essas reações pupilares, tem se tornado comum entre os pesquisadores da neurociência e psicologia cognitiva, pois permite a identificação de distúrbios neurológicos por meio dessas reações pupilares. Dessa forma a pupilometria tem se tornado uma estratégia comumente usada em processos clínicos pré-operatórios, e na identificação de distúrbios neurológicos em indivíduos. Neste contexto propõe-se um método computacional, para detectar e medir o tamanho da pupila, baseado em técnicas de processamento de imagens digitais e aprendizado de máquina, a fim de auxiliar psicólogos cognitivos e pesquisadores da neurociência a entender e identificar doenças neurológicas por meio das reações pupilares. O método propõe uma arquitetura de rede neural de multitarefas com a inclusão de mecanismos de atenção, denominado de At-Unet, para segmentar a região da íris e pupila com a intenção de obter o diâmetro da pupila, e calcular o fator de dilatação que define o estado da pupila em dilatada ou contraída. Esse método conseguiu 97,17% de coeficiente de Dice, a partir do experimento de validação cruzada, dessa forma o tipo de estado pupilar estimado apresenta um erro médio do fator de dilatação de 0.0167.Submitted by Jonathan Sousa de Almeida (jonathan.sousa@ufma.br) on 2022-07-12T11:52:04Z No. of bitstreams: 1 FREDSONCOSTARODRIGUES.pdf: 8635456 bytes, checksum: 46e9d920d4ba309e852b3b14bee3f704 (MD5)Made available in DSpace on 2022-07-12T11:52:04Z (GMT). No. of bitstreams: 1 FREDSONCOSTARODRIGUES.pdf: 8635456 bytes, checksum: 46e9d920d4ba309e852b3b14bee3f704 (MD5) Previous issue date: 2022-06-17FAPEMAapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETAt-Unet;constrição pupilar;dilatação pupilar;Rede Neural de Multitarefas;segmentação.At-Unet;contriction pupil;dilatation pupil;Neural Network of Multitasking;segmentation.Ciência da ComputaçãoAprendizado profundo para a detecção de pupilas dilatadas ou contraídasDeep learning for the detection of dilated or contracted pupilsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALFREDSONCOSTARODRIGUES.pdfFREDSONCOSTARODRIGUES.pdfapplication/pdf8635456http://tedebc.ufma.br:8080/bitstream/tede/3841/2/FREDSONCOSTARODRIGUES.pdf46e9d920d4ba309e852b3b14bee3f704MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/3841/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/38412023-05-16 14:14:08.333oai:tede2:tede/3841IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312023-05-16T17:14:08Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas
dc.title.alternative.eng.fl_str_mv Deep learning for the detection of dilated or contracted pupils
title Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas
spellingShingle Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas
RODRIGUES, Fredson Costa
At-Unet;
constrição pupilar;
dilatação pupilar;
Rede Neural de Multitarefas;
segmentação.
At-Unet;
contriction pupil;
dilatation pupil;
Neural Network of Multitasking;
segmentation.
Ciência da Computação
title_short Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas
title_full Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas
title_fullStr Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas
title_full_unstemmed Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas
title_sort Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas
author RODRIGUES, Fredson Costa
author_facet RODRIGUES, Fredson Costa
author_role author
dc.contributor.advisor1.fl_str_mv PAIVA, Anselmo Cardoso
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6446831084215512
dc.contributor.advisor-co1.fl_str_mv SILVA, Aristófanes Correa
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/2446301582459104
dc.contributor.referee1.fl_str_mv PAIVA, Anselmo Cardoso
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/6446831084215512
dc.contributor.referee2.fl_str_mv SILVA, Aristófanes Corrêa
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2446301582459104
dc.contributor.referee3.fl_str_mv ALMEIDA, João Dallyson Sousa de
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/6047330108382641
dc.contributor.referee4.fl_str_mv SOARES, André Castelo Branco
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/4545154317245176
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3550961999650779
dc.contributor.author.fl_str_mv RODRIGUES, Fredson Costa
contributor_str_mv PAIVA, Anselmo Cardoso
SILVA, Aristófanes Correa
PAIVA, Anselmo Cardoso
SILVA, Aristófanes Corrêa
ALMEIDA, João Dallyson Sousa de
SOARES, André Castelo Branco
dc.subject.por.fl_str_mv At-Unet;
constrição pupilar;
dilatação pupilar;
Rede Neural de Multitarefas;
segmentação.
topic At-Unet;
constrição pupilar;
dilatação pupilar;
Rede Neural de Multitarefas;
segmentação.
At-Unet;
contriction pupil;
dilatation pupil;
Neural Network of Multitasking;
segmentation.
Ciência da Computação
dc.subject.eng.fl_str_mv At-Unet;
contriction pupil;
dilatation pupil;
Neural Network of Multitasking;
segmentation.
dc.subject.cnpq.fl_str_mv Ciência da Computação
description Pupillometry is the measurement of pupillary diameter used in some medical procedures to evaluate reactions of pupillary dilatation and constriction. Those reactions can be involuntary when it is caused by the Central Nervous System (CNS), or provoked by the light reflections. The iris and the pupil compose the ocular globe that is responsible for forming human vision. The iris is the biggest circumference with pigmented textures, which allows the formation of the color of the eyes. The pupil is the smallest circumference and it is in the internal region of the iris; the pupil is characterized by which allows the entry of light to form the vision. This region presents two common responses (states) through externals (reflections of light) and internals stimulus (Central Nervous System). The dilatation state occurs when there is an extension of the pupil size, in a constriction state. On the other hand, its size reduces. Understanding these pupillary reactions has been coming common among the researchers of neuroscience and cognitive psychology since it allows the identification of neurologic disorders. Therefore, pupillometry has been becoming a popular strategy in clinic pre-operatory processes, and in the identification of neurologic disorders in some individuals. Considering this context, this work aims to propose a computational method able to detect and measure pupil size, based on processing digital image techniques and machine learning to assist cognitive psychologists and neuroscience researchers to understand and identify neurologic diseases through pupillary reactions. The method of planning a multitasking neural network architecture with the inclusion of attention mechanisms, called At-Unet, to segment the iris and pupil region with the intention of obtaining the pupil diameter, and calculate the dilation factor that defines the state of the pupil in dilated or contracted. This method achieved 97.17% of Dice coefficient, from the cross experiment, so the type of pupil state estimated has an average error of the dilation factor of 0.0167.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-07-12T11:52:04Z
dc.date.issued.fl_str_mv 2022-06-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RODRIGUES, Fredson Costa. Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas. 2022. 89 f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2022.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/3841
identifier_str_mv RODRIGUES, Fredson Costa. Aprendizado profundo para a detecção de pupilas dilatadas ou contraídas. 2022. 89 f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2022.
url https://tedebc.ufma.br/jspui/handle/tede/tede/3841
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/3841/2/FREDSONCOSTARODRIGUES.pdf
http://tedebc.ufma.br:8080/bitstream/tede/3841/1/license.txt
bitstream.checksum.fl_str_mv 46e9d920d4ba309e852b3b14bee3f704
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926203905146880