FERRAMENTA COMPUTACIONAL PARA PREDIÇÃO DE RISCO DE INFECÇÃO POR PAPILOMAVIRUS HUMANO (HPV) PELA LÓGICA FUZZY
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/tede/4063 |
Resumo: | Introduction: The Human Papillomavirus (HPV) is one of the most common sexually transmitted infections (STIs) and responsible for approximately 99% of cervical cancers in the world. Thus, there is a need to insert early search methods that help women to be referred for preventive examination of the uterine cervix. Therefore, one of the possible improvements for the active search in health came with the advent of technological evolutions. In this context, bioinformatics emerges as an instrument to aid in the prediction and early diagnosis of diseases. The objective was to develop a computational tool for HPV risk prediction using fuzzy logic. Methodology: This is a computational model using fuzzy logic tools to predict women with greater predisposition to HPV risk exposure. The research was authorized by the Research Ethics Committee under number 2392728. A semi-structured questionnaire was applied, in addition to the collection of vaginal smear samples in women over 18 years old who sought the Health Units. the selection of the choice of variables that were used as input to the software. From this perspective, 6 (six) cofactors considered as potential and important predictors for inputs and one output were selected. Among them are: age, education, smoking, sexual behavior, number of pregnancies, use of contraceptives. Then, for the development of the algorithm, two more phases took place. The first was the PHP language and MySQL database for entering the collected data, separating and standardizing information, which aimed at faster search and comparison through computer systems. The second started with the layout of the fuzzy sets to assemble the Fuzzy Logic in the system. In order to build the models, it was necessary to divide the input data into degrees of risk, as well as the output set, which represented the final fuzzy set. After defining the input and output sets, the base data was entered into the HPV Risk Calculator system. Based on the aforementioned indicators, the calculator made reference to the data reported in the interviews and exams of each research participant. First, risk cofactors available in the literature were listed, added to the collection results to construct the calculation with the determination of risk, after the analysis, the RISK set was concatenated into 3 sets. After the fuzzified data, the following items were obtained as variables for availability in the risk calculator: GREEN = [0 - 30%], low risk; YELLOW = [31 - 50%], medium risk; RED = above 50%, high risk of HPV infection. Results: 562 women were surveyed. From the results obtained in the epidemiological and cervical findings of the women participating in the research, 400 were used for software training and 162 for system validation. Conclusion: The software was effective in validation and testing. Its purpose was to search for women early to undergo the preventive examination of the uterine cervix in primary care, which is considered the point of entry for users in the Brazilian health system. Finally, we consider the need to increase the number of collections to achieve an accuracy of 95% for optimal validation of the calculator. |
id |
UFMA_7e74f4fb61d947ae2a8a65ccd1b9b513 |
---|---|
oai_identifier_str |
oai:tede2:tede/4063 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
BARROS FILHO, Allan Kardec D.http://lattes.cnpq.br/0492330410079141MONTEIRO, Sally Cristina M.http://lattes.cnpq.br/4190147129451754BARROS FILHO, Allan Kardec Duailibehttp://lattes.cnpq.br/0492330410079141CARTAGENES, Maria Socorro de Sousahttp://lattes.cnpq.br/3013333572719007VICTOR, Elis CabralSOUSA, Rosangela M. LopesCABRAL, Flávia Castello Branco Vidalhttp://lattes.cnpq.br/0085459127860829BELFORT, Ilka Kassandra Pereira2022-09-02T16:47:24Z2021-05-28BELFORT, Ilka Kassandra Pereira. Ferramenta computacional para predição de risco de infecção por Papilomavirus Humano (HPV) pela lógica Fuzzy. 2021. 84 f. Tese( Programa de Pós-graduação em Biotecnologia- RENORBIO/CCBS) - Universidade Federal do Maranhão, São Luis, 2021.https://tedebc.ufma.br/jspui/handle/tede/tede/4063Introduction: The Human Papillomavirus (HPV) is one of the most common sexually transmitted infections (STIs) and responsible for approximately 99% of cervical cancers in the world. Thus, there is a need to insert early search methods that help women to be referred for preventive examination of the uterine cervix. Therefore, one of the possible improvements for the active search in health came with the advent of technological evolutions. In this context, bioinformatics emerges as an instrument to aid in the prediction and early diagnosis of diseases. The objective was to develop a computational tool for HPV risk prediction using fuzzy logic. Methodology: This is a computational model using fuzzy logic tools to predict women with greater predisposition to HPV risk exposure. The research was authorized by the Research Ethics Committee under number 2392728. A semi-structured questionnaire was applied, in addition to the collection of vaginal smear samples in women over 18 years old who sought the Health Units. the selection of the choice of variables that were used as input to the software. From this perspective, 6 (six) cofactors considered as potential and important predictors for inputs and one output were selected. Among them are: age, education, smoking, sexual behavior, number of pregnancies, use of contraceptives. Then, for the development of the algorithm, two more phases took place. The first was the PHP language and MySQL database for entering the collected data, separating and standardizing information, which aimed at faster search and comparison through computer systems. The second started with the layout of the fuzzy sets to assemble the Fuzzy Logic in the system. In order to build the models, it was necessary to divide the input data into degrees of risk, as well as the output set, which represented the final fuzzy set. After defining the input and output sets, the base data was entered into the HPV Risk Calculator system. Based on the aforementioned indicators, the calculator made reference to the data reported in the interviews and exams of each research participant. First, risk cofactors available in the literature were listed, added to the collection results to construct the calculation with the determination of risk, after the analysis, the RISK set was concatenated into 3 sets. After the fuzzified data, the following items were obtained as variables for availability in the risk calculator: GREEN = [0 - 30%], low risk; YELLOW = [31 - 50%], medium risk; RED = above 50%, high risk of HPV infection. Results: 562 women were surveyed. From the results obtained in the epidemiological and cervical findings of the women participating in the research, 400 were used for software training and 162 for system validation. Conclusion: The software was effective in validation and testing. Its purpose was to search for women early to undergo the preventive examination of the uterine cervix in primary care, which is considered the point of entry for users in the Brazilian health system. Finally, we consider the need to increase the number of collections to achieve an accuracy of 95% for optimal validation of the calculator.Introdução: O Papilomavírus Humano (HPV) é uma das infecções sexualmente transmissíveis (IST) mais comuns e responsável por aproximadamente 99% dos cânceres cervicais, no mundo. Dessa forma, tem-se a necessidade de inserção de métodos de busca precoce que auxiliem as mulheres a serem encaminhadas para realização do exame preventivo de colo uterino. Para tanto, uma das possíveis melhorias para a busca ativa em saúde veio com o advento das evoluções tecnológicas. Nesse contexto, a bioinformática surge como um instrumento de auxílio de predição e diagnóstico precoce de doenças. O objetivo foi desenvolver uma ferramenta computacional de predição de risco de HPV pela lógica fuzzy. Metodologia: Trata-se de um modelo computacional utilizando ferramentas da lógica fuzzy para predição de mulheres com maior predisposição a exposição do risco do HPV. A pesquisa foi autorizada pelo Comitê de Ética em pesquisa sob o número 2392728. Aplicou-se questionário semiestruturado, além da coleta de amostras do esfregaço vaginal em mulheres acima de 18 anos que procuraram as Unidades de Saúde. Para desenvolvimento do algoritmo primeiramente obteve-se a seleção da escolha das variáveis que foram utilizadas como entrada do software. Nessa ótica, foram selecionados 6 (seis) cofatores considerados como potenciais preditores e importantes para entradas e uma de saída. Dentre eles constam: idade, escolaridade, tabagismo, comportamento sexual, número de gestações, uso de anticoncepcional. Em seguida, para desenvolvimento do algoritmo ocorreram mais duas fases. A primeira foi a linguagem PHP e banco de dados MySQL para inserção dos dados coletados, separação e padronização das informações, que teve como alvo a busca e comparação mais rápida através de sistemas de computação. A segunda iniciou-se com a diagramação dos conjuntos nebulosos para montagem da Lógica Fuzzy no sistema. Na sequência para construção dos modelos foi necessário a divisão dos dados de entrada em graus de risco, assim como o conjunto de saída, que representou o conjunto nebuloso final. Após a definição dos conjuntos de entrada e saída foi inserido os dados da base no sistema da Calculadora de Risco HPV. Baseado nos indicadores supracitados, a calculadora fez referência aos dados informados nas entrevistas e exames de cada participante da pesquisa. Primeiramente foi elencado cofatores de risco disponíveis na literatura agregados aos resultados da coleta para construção do cálculo com a determinação do risco, após a análise, concatenou-se o conjunto de RISCO em 3 conjuntos. Após os dados fuzzificados obteve-se como variáveis para disponibilização na calculadora de risco os seguintes itens: VERDE = [0 - 30%], baixo risco; AMARELO = [31 - 50%], médio risco; VERMELHO = acima de 50%, alto risco de infecção por HPV. Resultados: Pesquisou-se 562 mulheres. Dos resultados obtidos nos achados epidemiológicos e cervicais das mulheres participantes da pesquisa, 400 foi utilizado para treinamento do software e 162 para validação do sistema. Conclusão: O software foi efetivo na validação e teste. Teve como finalidade de busca precoce de mulheres para realização do exame de preventivo de colo uterino na atenção básica, esse que é considerado o local de porta de entrada dos usuários no sistema de saúde brasileiro. Por fim, considera-se a necessidade de aumento do número de coletas para um alcance de acurácia de 95% para validação ideal da calculadora.Submitted by Maria Aparecida (cidazen@gmail.com) on 2022-09-02T16:47:24Z No. of bitstreams: 1 Ilka K..pdf: 21984151 bytes, checksum: 203dc65004881fb6c85185335154f793 (MD5)Made available in DSpace on 2022-09-02T16:47:24Z (GMT). No. of bitstreams: 1 Ilka K..pdf: 21984151 bytes, checksum: 203dc65004881fb6c85185335154f793 (MD5) Previous issue date: 2021-05-28FAPEMAapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA - RENORBIO/CCBSUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETPapilomavírus humano;Teste de papanicolau;Prevenção;Validação de softwareFuzzy Logic;Pap test;Prevention;Software validationHuman papillomavirus;Saúde PublicaFERRAMENTA COMPUTACIONAL PARA PREDIÇÃO DE RISCO DE INFECÇÃO POR PAPILOMAVIRUS HUMANO (HPV) PELA LÓGICA FUZZYA COMPUTATIONAL TOOL FOR RISK PREDICTION OF INFECTION HUMAN PAPILLOMAVIRUS (HPV) THROUGH FUZZY LOGICinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALIlka K..pdfIlka K..pdfapplication/pdf21984151http://tedebc.ufma.br:8080/bitstream/tede/4063/2/Ilka+K..pdf203dc65004881fb6c85185335154f793MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/4063/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/40632022-09-02 13:47:24.955oai:tede2:tede/4063IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312022-09-02T16:47:24Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
FERRAMENTA COMPUTACIONAL PARA PREDIÇÃO DE RISCO DE INFECÇÃO POR PAPILOMAVIRUS HUMANO (HPV) PELA LÓGICA FUZZY |
dc.title.alternative.eng.fl_str_mv |
A COMPUTATIONAL TOOL FOR RISK PREDICTION OF INFECTION HUMAN PAPILLOMAVIRUS (HPV) THROUGH FUZZY LOGIC |
title |
FERRAMENTA COMPUTACIONAL PARA PREDIÇÃO DE RISCO DE INFECÇÃO POR PAPILOMAVIRUS HUMANO (HPV) PELA LÓGICA FUZZY |
spellingShingle |
FERRAMENTA COMPUTACIONAL PARA PREDIÇÃO DE RISCO DE INFECÇÃO POR PAPILOMAVIRUS HUMANO (HPV) PELA LÓGICA FUZZY BELFORT, Ilka Kassandra Pereira Papilomavírus humano; Teste de papanicolau; Prevenção; Validação de software Fuzzy Logic; Pap test; Prevention; Software validation Human papillomavirus; Saúde Publica |
title_short |
FERRAMENTA COMPUTACIONAL PARA PREDIÇÃO DE RISCO DE INFECÇÃO POR PAPILOMAVIRUS HUMANO (HPV) PELA LÓGICA FUZZY |
title_full |
FERRAMENTA COMPUTACIONAL PARA PREDIÇÃO DE RISCO DE INFECÇÃO POR PAPILOMAVIRUS HUMANO (HPV) PELA LÓGICA FUZZY |
title_fullStr |
FERRAMENTA COMPUTACIONAL PARA PREDIÇÃO DE RISCO DE INFECÇÃO POR PAPILOMAVIRUS HUMANO (HPV) PELA LÓGICA FUZZY |
title_full_unstemmed |
FERRAMENTA COMPUTACIONAL PARA PREDIÇÃO DE RISCO DE INFECÇÃO POR PAPILOMAVIRUS HUMANO (HPV) PELA LÓGICA FUZZY |
title_sort |
FERRAMENTA COMPUTACIONAL PARA PREDIÇÃO DE RISCO DE INFECÇÃO POR PAPILOMAVIRUS HUMANO (HPV) PELA LÓGICA FUZZY |
author |
BELFORT, Ilka Kassandra Pereira |
author_facet |
BELFORT, Ilka Kassandra Pereira |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
BARROS FILHO, Allan Kardec D. |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0492330410079141 |
dc.contributor.advisor-co1.fl_str_mv |
MONTEIRO, Sally Cristina M. |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/4190147129451754 |
dc.contributor.referee1.fl_str_mv |
BARROS FILHO, Allan Kardec Duailibe |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/0492330410079141 |
dc.contributor.referee2.fl_str_mv |
CARTAGENES, Maria Socorro de Sousa |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/3013333572719007 |
dc.contributor.referee3.fl_str_mv |
VICTOR, Elis Cabral |
dc.contributor.referee4.fl_str_mv |
SOUSA, Rosangela M. Lopes |
dc.contributor.referee5.fl_str_mv |
CABRAL, Flávia Castello Branco Vidal |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/0085459127860829 |
dc.contributor.author.fl_str_mv |
BELFORT, Ilka Kassandra Pereira |
contributor_str_mv |
BARROS FILHO, Allan Kardec D. MONTEIRO, Sally Cristina M. BARROS FILHO, Allan Kardec Duailibe CARTAGENES, Maria Socorro de Sousa VICTOR, Elis Cabral SOUSA, Rosangela M. Lopes CABRAL, Flávia Castello Branco Vidal |
dc.subject.por.fl_str_mv |
Papilomavírus humano; Teste de papanicolau; Prevenção; Validação de software Fuzzy Logic; Pap test; Prevention; Software validation |
topic |
Papilomavírus humano; Teste de papanicolau; Prevenção; Validação de software Fuzzy Logic; Pap test; Prevention; Software validation Human papillomavirus; Saúde Publica |
dc.subject.eng.fl_str_mv |
Human papillomavirus; |
dc.subject.cnpq.fl_str_mv |
Saúde Publica |
description |
Introduction: The Human Papillomavirus (HPV) is one of the most common sexually transmitted infections (STIs) and responsible for approximately 99% of cervical cancers in the world. Thus, there is a need to insert early search methods that help women to be referred for preventive examination of the uterine cervix. Therefore, one of the possible improvements for the active search in health came with the advent of technological evolutions. In this context, bioinformatics emerges as an instrument to aid in the prediction and early diagnosis of diseases. The objective was to develop a computational tool for HPV risk prediction using fuzzy logic. Methodology: This is a computational model using fuzzy logic tools to predict women with greater predisposition to HPV risk exposure. The research was authorized by the Research Ethics Committee under number 2392728. A semi-structured questionnaire was applied, in addition to the collection of vaginal smear samples in women over 18 years old who sought the Health Units. the selection of the choice of variables that were used as input to the software. From this perspective, 6 (six) cofactors considered as potential and important predictors for inputs and one output were selected. Among them are: age, education, smoking, sexual behavior, number of pregnancies, use of contraceptives. Then, for the development of the algorithm, two more phases took place. The first was the PHP language and MySQL database for entering the collected data, separating and standardizing information, which aimed at faster search and comparison through computer systems. The second started with the layout of the fuzzy sets to assemble the Fuzzy Logic in the system. In order to build the models, it was necessary to divide the input data into degrees of risk, as well as the output set, which represented the final fuzzy set. After defining the input and output sets, the base data was entered into the HPV Risk Calculator system. Based on the aforementioned indicators, the calculator made reference to the data reported in the interviews and exams of each research participant. First, risk cofactors available in the literature were listed, added to the collection results to construct the calculation with the determination of risk, after the analysis, the RISK set was concatenated into 3 sets. After the fuzzified data, the following items were obtained as variables for availability in the risk calculator: GREEN = [0 - 30%], low risk; YELLOW = [31 - 50%], medium risk; RED = above 50%, high risk of HPV infection. Results: 562 women were surveyed. From the results obtained in the epidemiological and cervical findings of the women participating in the research, 400 were used for software training and 162 for system validation. Conclusion: The software was effective in validation and testing. Its purpose was to search for women early to undergo the preventive examination of the uterine cervix in primary care, which is considered the point of entry for users in the Brazilian health system. Finally, we consider the need to increase the number of collections to achieve an accuracy of 95% for optimal validation of the calculator. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-05-28 |
dc.date.accessioned.fl_str_mv |
2022-09-02T16:47:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BELFORT, Ilka Kassandra Pereira. Ferramenta computacional para predição de risco de infecção por Papilomavirus Humano (HPV) pela lógica Fuzzy. 2021. 84 f. Tese( Programa de Pós-graduação em Biotecnologia- RENORBIO/CCBS) - Universidade Federal do Maranhão, São Luis, 2021. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/tede/4063 |
identifier_str_mv |
BELFORT, Ilka Kassandra Pereira. Ferramenta computacional para predição de risco de infecção por Papilomavirus Humano (HPV) pela lógica Fuzzy. 2021. 84 f. Tese( Programa de Pós-graduação em Biotecnologia- RENORBIO/CCBS) - Universidade Federal do Maranhão, São Luis, 2021. |
url |
https://tedebc.ufma.br/jspui/handle/tede/tede/4063 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA - RENORBIO/CCBS |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/4063/2/Ilka+K..pdf http://tedebc.ufma.br:8080/bitstream/tede/4063/1/license.txt |
bitstream.checksum.fl_str_mv |
203dc65004881fb6c85185335154f793 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1809926206351474688 |