Classificação de imagens de exames de endoscopia por cápsula utilizando transformers

Detalhes bibliográficos
Autor(a) principal: LIMA, Daniel Lopes Soares
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/4635
Resumo: Inflammatory bowel diseases have a high incidence rate in the population, being one of the leading causes of hospitalization. Videos obtained through endoscopic capsules are essential for evaluating anomalies in the gastrointestinal tract. However, due to their duration, which can reach 10 hours, they demand great attention from the medical specialist in their analysis. Machine learning techniques have been successfully applied in developing computer-aided diagnostic systems since the 1990s, where Convolutional Neural Networks (CNNs) have become very successful for pattern recognition in images. CNNs use convolutions to extract features from the analyzed data, operating in a fixed- size window and thus having problems capturing pixel-level relationships considering the spatial and temporal domains. Otherwise, Transformers use attention mechanisms, where data is structured in a vector space that can aggregate information from adjacent data to determine meaning in a given context. This work proposes a computational method for analyzing images extracted from videos obtained by endoscopic capsules, using a transformer-based model that helps diagnose of gastrointestinal tract abnormalities. The proposed methodology was applied on 41511 WCE images from the Kvasir-Capsule dataset. In the experiments performed for the classification task of 11 classes, the best results were achieved by the DeiT model, which registered average rates of 99.75% of accuracy, 98.17% of precision, 98.31% of sensitivity and 98.06% of f1-score.
id UFMA_8db664ce70bd9b8024e57235321be446
oai_identifier_str oai:tede2:tede/4635
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling PAIVA, Anselmo Cardoso dehttp://lattes.cnpq.br/6446831084215512CUNHA, António Manuel Trigueiros da Silvahttp://lattes.cnpq.br/5627403952778618PAIVA, Anselmo Cardoso dehttp://lattes.cnpq.br/6446831084215512CUNHA, António Manuel Trigueiros da Silvahttp://lattes.cnpq.br/5627403952778618QUINTANILHA, Darlan Bruno Ponteshttp://lattes.cnpq.br/4222253532775153SILVA, Augusto Marques Ferreira dahttp://lattes.cnpq.br/1667128854119498LIMA, Daniel Lopes Soares2023-04-11T16:40:24Z2023-03-24LIMA, Daniel Lopes Soares. Classificação de imagens de exames de endoscopia por cápsula utilizando transformers. 2023. 57 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2023.https://tedebc.ufma.br/jspui/handle/tede/tede/4635Inflammatory bowel diseases have a high incidence rate in the population, being one of the leading causes of hospitalization. Videos obtained through endoscopic capsules are essential for evaluating anomalies in the gastrointestinal tract. However, due to their duration, which can reach 10 hours, they demand great attention from the medical specialist in their analysis. Machine learning techniques have been successfully applied in developing computer-aided diagnostic systems since the 1990s, where Convolutional Neural Networks (CNNs) have become very successful for pattern recognition in images. CNNs use convolutions to extract features from the analyzed data, operating in a fixed- size window and thus having problems capturing pixel-level relationships considering the spatial and temporal domains. Otherwise, Transformers use attention mechanisms, where data is structured in a vector space that can aggregate information from adjacent data to determine meaning in a given context. This work proposes a computational method for analyzing images extracted from videos obtained by endoscopic capsules, using a transformer-based model that helps diagnose of gastrointestinal tract abnormalities. The proposed methodology was applied on 41511 WCE images from the Kvasir-Capsule dataset. In the experiments performed for the classification task of 11 classes, the best results were achieved by the DeiT model, which registered average rates of 99.75% of accuracy, 98.17% of precision, 98.31% of sensitivity and 98.06% of f1-score.As doenças inflamatórias intestinais apresentam alta taxa de incidência na população, sendo umas das principais causas de internação hospitalar. Os vídeos obtidos por meio de cápsulas endoscópicas são essenciais para o diagnóstico de anomalias no trato gastrointestinal. Porém, devido à sua duração, que pode chegar a 10 horas, demandam grande atenção do especialista médico em sua análise. Técnicas de aprendizado de máquina têm sido aplicadas com sucesso no desenvolvimento de sistemas de diagnóstico auxiliados por computador desde a década de 1990. Na última década as Redes Neurais Convolucionais (CNNs) tornaram-se modelo de grande sucesso para reconhecimento de padrões em imagens. As CNNs usam convoluções para extrair características dos dados analisados, operando em uma janela de tamanho fixo e, portanto, tendo problemas para capturar relacionamentos em nível de pixel considerando os domínios espacial e temporal. Transformers, por sua vez, usam mecanismos de atenção, onde os dados são estruturados em um espaço vetorial que pode agregar informações de dados adjacentes para determinar o significado em um determinado contexto. Este trabalho propõe um método computacional para análise de imagens extraídas de vídeos obtidos por cápsulas endoscópicas, usando uma arquitetura baseada em Transformers, visando auxiliar o especialista médico no diagnóstico de anormalidades do trato gastrointestinal. A metodologia proposta foi aplicada em 41511 imagens WCE do dataset Kvasir-Capsule. Nos experimentos realizados para a classificação de 11 classes, os melhores resultados foram alcançados pelo modelo DeiT, que registrou taxas médias de 99,75% de acurácia, 98,17% de precisão, 98,31% de sensibilidade e 98,06% de f1-score.Submitted by Jonathan Sousa de Almeida (jonathan.sousa@ufma.br) on 2023-04-11T16:40:24Z No. of bitstreams: 1 DanielLopesSoaresLima.pdf: 7162289 bytes, checksum: f0e7e7ded57135aff3737c078b3882f8 (MD5)Made available in DSpace on 2023-04-11T16:40:24Z (GMT). No. of bitstreams: 1 DanielLopesSoaresLima.pdf: 7162289 bytes, checksum: f0e7e7ded57135aff3737c078b3882f8 (MD5) Previous issue date: 2023-03-24application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETTrato Gastrointestinal;WCE;classificação;transformers;ViT;DeiT.GI Tract;WCE;classification;transformers;ViT;DeiT.Ciências da ComputaçãoClassificação de imagens de exames de endoscopia por cápsula utilizando transformersImage classification of capsule endoscopy exams using transformersinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALDanielLopesSoaresLima.pdfDanielLopesSoaresLima.pdfapplication/pdf7162289http://tedebc.ufma.br:8080/bitstream/tede/4635/2/DanielLopesSoaresLima.pdff0e7e7ded57135aff3737c078b3882f8MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/4635/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/46352023-05-19 09:42:14.314oai:tede2:tede/4635IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312023-05-19T12:42:14Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Classificação de imagens de exames de endoscopia por cápsula utilizando transformers
dc.title.alternative.eng.fl_str_mv Image classification of capsule endoscopy exams using transformers
title Classificação de imagens de exames de endoscopia por cápsula utilizando transformers
spellingShingle Classificação de imagens de exames de endoscopia por cápsula utilizando transformers
LIMA, Daniel Lopes Soares
Trato Gastrointestinal;
WCE;
classificação;
transformers;
ViT;
DeiT.
GI Tract;
WCE;
classification;
transformers;
ViT;
DeiT.
Ciências da Computação
title_short Classificação de imagens de exames de endoscopia por cápsula utilizando transformers
title_full Classificação de imagens de exames de endoscopia por cápsula utilizando transformers
title_fullStr Classificação de imagens de exames de endoscopia por cápsula utilizando transformers
title_full_unstemmed Classificação de imagens de exames de endoscopia por cápsula utilizando transformers
title_sort Classificação de imagens de exames de endoscopia por cápsula utilizando transformers
author LIMA, Daniel Lopes Soares
author_facet LIMA, Daniel Lopes Soares
author_role author
dc.contributor.advisor1.fl_str_mv PAIVA, Anselmo Cardoso de
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6446831084215512
dc.contributor.advisor-co1.fl_str_mv CUNHA, António Manuel Trigueiros da Silva
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/5627403952778618
dc.contributor.referee1.fl_str_mv PAIVA, Anselmo Cardoso de
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/6446831084215512
dc.contributor.referee2.fl_str_mv CUNHA, António Manuel Trigueiros da Silva
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/5627403952778618
dc.contributor.referee3.fl_str_mv QUINTANILHA, Darlan Bruno Pontes
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4222253532775153
dc.contributor.referee4.fl_str_mv SILVA, Augusto Marques Ferreira da
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1667128854119498
dc.contributor.author.fl_str_mv LIMA, Daniel Lopes Soares
contributor_str_mv PAIVA, Anselmo Cardoso de
CUNHA, António Manuel Trigueiros da Silva
PAIVA, Anselmo Cardoso de
CUNHA, António Manuel Trigueiros da Silva
QUINTANILHA, Darlan Bruno Pontes
SILVA, Augusto Marques Ferreira da
dc.subject.por.fl_str_mv Trato Gastrointestinal;
WCE;
classificação;
transformers;
ViT;
DeiT.
topic Trato Gastrointestinal;
WCE;
classificação;
transformers;
ViT;
DeiT.
GI Tract;
WCE;
classification;
transformers;
ViT;
DeiT.
Ciências da Computação
dc.subject.eng.fl_str_mv GI Tract;
WCE;
classification;
transformers;
ViT;
DeiT.
dc.subject.cnpq.fl_str_mv Ciências da Computação
description Inflammatory bowel diseases have a high incidence rate in the population, being one of the leading causes of hospitalization. Videos obtained through endoscopic capsules are essential for evaluating anomalies in the gastrointestinal tract. However, due to their duration, which can reach 10 hours, they demand great attention from the medical specialist in their analysis. Machine learning techniques have been successfully applied in developing computer-aided diagnostic systems since the 1990s, where Convolutional Neural Networks (CNNs) have become very successful for pattern recognition in images. CNNs use convolutions to extract features from the analyzed data, operating in a fixed- size window and thus having problems capturing pixel-level relationships considering the spatial and temporal domains. Otherwise, Transformers use attention mechanisms, where data is structured in a vector space that can aggregate information from adjacent data to determine meaning in a given context. This work proposes a computational method for analyzing images extracted from videos obtained by endoscopic capsules, using a transformer-based model that helps diagnose of gastrointestinal tract abnormalities. The proposed methodology was applied on 41511 WCE images from the Kvasir-Capsule dataset. In the experiments performed for the classification task of 11 classes, the best results were achieved by the DeiT model, which registered average rates of 99.75% of accuracy, 98.17% of precision, 98.31% of sensitivity and 98.06% of f1-score.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-04-11T16:40:24Z
dc.date.issued.fl_str_mv 2023-03-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LIMA, Daniel Lopes Soares. Classificação de imagens de exames de endoscopia por cápsula utilizando transformers. 2023. 57 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2023.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/4635
identifier_str_mv LIMA, Daniel Lopes Soares. Classificação de imagens de exames de endoscopia por cápsula utilizando transformers. 2023. 57 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2023.
url https://tedebc.ufma.br/jspui/handle/tede/tede/4635
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE INFORMÁTICA/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/4635/2/DanielLopesSoaresLima.pdf
http://tedebc.ufma.br:8080/bitstream/tede/4635/1/license.txt
bitstream.checksum.fl_str_mv f0e7e7ded57135aff3737c078b3882f8
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926213234327552