Classificação de imagens de exames de endoscopia por cápsula utilizando transformers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/tede/4635 |
Resumo: | Inflammatory bowel diseases have a high incidence rate in the population, being one of the leading causes of hospitalization. Videos obtained through endoscopic capsules are essential for evaluating anomalies in the gastrointestinal tract. However, due to their duration, which can reach 10 hours, they demand great attention from the medical specialist in their analysis. Machine learning techniques have been successfully applied in developing computer-aided diagnostic systems since the 1990s, where Convolutional Neural Networks (CNNs) have become very successful for pattern recognition in images. CNNs use convolutions to extract features from the analyzed data, operating in a fixed- size window and thus having problems capturing pixel-level relationships considering the spatial and temporal domains. Otherwise, Transformers use attention mechanisms, where data is structured in a vector space that can aggregate information from adjacent data to determine meaning in a given context. This work proposes a computational method for analyzing images extracted from videos obtained by endoscopic capsules, using a transformer-based model that helps diagnose of gastrointestinal tract abnormalities. The proposed methodology was applied on 41511 WCE images from the Kvasir-Capsule dataset. In the experiments performed for the classification task of 11 classes, the best results were achieved by the DeiT model, which registered average rates of 99.75% of accuracy, 98.17% of precision, 98.31% of sensitivity and 98.06% of f1-score. |
id |
UFMA_8db664ce70bd9b8024e57235321be446 |
---|---|
oai_identifier_str |
oai:tede2:tede/4635 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
PAIVA, Anselmo Cardoso dehttp://lattes.cnpq.br/6446831084215512CUNHA, António Manuel Trigueiros da Silvahttp://lattes.cnpq.br/5627403952778618PAIVA, Anselmo Cardoso dehttp://lattes.cnpq.br/6446831084215512CUNHA, António Manuel Trigueiros da Silvahttp://lattes.cnpq.br/5627403952778618QUINTANILHA, Darlan Bruno Ponteshttp://lattes.cnpq.br/4222253532775153SILVA, Augusto Marques Ferreira dahttp://lattes.cnpq.br/1667128854119498LIMA, Daniel Lopes Soares2023-04-11T16:40:24Z2023-03-24LIMA, Daniel Lopes Soares. Classificação de imagens de exames de endoscopia por cápsula utilizando transformers. 2023. 57 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2023.https://tedebc.ufma.br/jspui/handle/tede/tede/4635Inflammatory bowel diseases have a high incidence rate in the population, being one of the leading causes of hospitalization. Videos obtained through endoscopic capsules are essential for evaluating anomalies in the gastrointestinal tract. However, due to their duration, which can reach 10 hours, they demand great attention from the medical specialist in their analysis. Machine learning techniques have been successfully applied in developing computer-aided diagnostic systems since the 1990s, where Convolutional Neural Networks (CNNs) have become very successful for pattern recognition in images. CNNs use convolutions to extract features from the analyzed data, operating in a fixed- size window and thus having problems capturing pixel-level relationships considering the spatial and temporal domains. Otherwise, Transformers use attention mechanisms, where data is structured in a vector space that can aggregate information from adjacent data to determine meaning in a given context. This work proposes a computational method for analyzing images extracted from videos obtained by endoscopic capsules, using a transformer-based model that helps diagnose of gastrointestinal tract abnormalities. The proposed methodology was applied on 41511 WCE images from the Kvasir-Capsule dataset. In the experiments performed for the classification task of 11 classes, the best results were achieved by the DeiT model, which registered average rates of 99.75% of accuracy, 98.17% of precision, 98.31% of sensitivity and 98.06% of f1-score.As doenças inflamatórias intestinais apresentam alta taxa de incidência na população, sendo umas das principais causas de internação hospitalar. Os vídeos obtidos por meio de cápsulas endoscópicas são essenciais para o diagnóstico de anomalias no trato gastrointestinal. Porém, devido à sua duração, que pode chegar a 10 horas, demandam grande atenção do especialista médico em sua análise. Técnicas de aprendizado de máquina têm sido aplicadas com sucesso no desenvolvimento de sistemas de diagnóstico auxiliados por computador desde a década de 1990. Na última década as Redes Neurais Convolucionais (CNNs) tornaram-se modelo de grande sucesso para reconhecimento de padrões em imagens. As CNNs usam convoluções para extrair características dos dados analisados, operando em uma janela de tamanho fixo e, portanto, tendo problemas para capturar relacionamentos em nível de pixel considerando os domínios espacial e temporal. Transformers, por sua vez, usam mecanismos de atenção, onde os dados são estruturados em um espaço vetorial que pode agregar informações de dados adjacentes para determinar o significado em um determinado contexto. Este trabalho propõe um método computacional para análise de imagens extraídas de vídeos obtidos por cápsulas endoscópicas, usando uma arquitetura baseada em Transformers, visando auxiliar o especialista médico no diagnóstico de anormalidades do trato gastrointestinal. A metodologia proposta foi aplicada em 41511 imagens WCE do dataset Kvasir-Capsule. Nos experimentos realizados para a classificação de 11 classes, os melhores resultados foram alcançados pelo modelo DeiT, que registrou taxas médias de 99,75% de acurácia, 98,17% de precisão, 98,31% de sensibilidade e 98,06% de f1-score.Submitted by Jonathan Sousa de Almeida (jonathan.sousa@ufma.br) on 2023-04-11T16:40:24Z No. of bitstreams: 1 DanielLopesSoaresLima.pdf: 7162289 bytes, checksum: f0e7e7ded57135aff3737c078b3882f8 (MD5)Made available in DSpace on 2023-04-11T16:40:24Z (GMT). No. of bitstreams: 1 DanielLopesSoaresLima.pdf: 7162289 bytes, checksum: f0e7e7ded57135aff3737c078b3882f8 (MD5) Previous issue date: 2023-03-24application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETTrato Gastrointestinal;WCE;classificação;transformers;ViT;DeiT.GI Tract;WCE;classification;transformers;ViT;DeiT.Ciências da ComputaçãoClassificação de imagens de exames de endoscopia por cápsula utilizando transformersImage classification of capsule endoscopy exams using transformersinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALDanielLopesSoaresLima.pdfDanielLopesSoaresLima.pdfapplication/pdf7162289http://tedebc.ufma.br:8080/bitstream/tede/4635/2/DanielLopesSoaresLima.pdff0e7e7ded57135aff3737c078b3882f8MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/4635/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/46352023-05-19 09:42:14.314oai:tede2:tede/4635IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312023-05-19T12:42:14Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Classificação de imagens de exames de endoscopia por cápsula utilizando transformers |
dc.title.alternative.eng.fl_str_mv |
Image classification of capsule endoscopy exams using transformers |
title |
Classificação de imagens de exames de endoscopia por cápsula utilizando transformers |
spellingShingle |
Classificação de imagens de exames de endoscopia por cápsula utilizando transformers LIMA, Daniel Lopes Soares Trato Gastrointestinal; WCE; classificação; transformers; ViT; DeiT. GI Tract; WCE; classification; transformers; ViT; DeiT. Ciências da Computação |
title_short |
Classificação de imagens de exames de endoscopia por cápsula utilizando transformers |
title_full |
Classificação de imagens de exames de endoscopia por cápsula utilizando transformers |
title_fullStr |
Classificação de imagens de exames de endoscopia por cápsula utilizando transformers |
title_full_unstemmed |
Classificação de imagens de exames de endoscopia por cápsula utilizando transformers |
title_sort |
Classificação de imagens de exames de endoscopia por cápsula utilizando transformers |
author |
LIMA, Daniel Lopes Soares |
author_facet |
LIMA, Daniel Lopes Soares |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
PAIVA, Anselmo Cardoso de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6446831084215512 |
dc.contributor.advisor-co1.fl_str_mv |
CUNHA, António Manuel Trigueiros da Silva |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/5627403952778618 |
dc.contributor.referee1.fl_str_mv |
PAIVA, Anselmo Cardoso de |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/6446831084215512 |
dc.contributor.referee2.fl_str_mv |
CUNHA, António Manuel Trigueiros da Silva |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/5627403952778618 |
dc.contributor.referee3.fl_str_mv |
QUINTANILHA, Darlan Bruno Pontes |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/4222253532775153 |
dc.contributor.referee4.fl_str_mv |
SILVA, Augusto Marques Ferreira da |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1667128854119498 |
dc.contributor.author.fl_str_mv |
LIMA, Daniel Lopes Soares |
contributor_str_mv |
PAIVA, Anselmo Cardoso de CUNHA, António Manuel Trigueiros da Silva PAIVA, Anselmo Cardoso de CUNHA, António Manuel Trigueiros da Silva QUINTANILHA, Darlan Bruno Pontes SILVA, Augusto Marques Ferreira da |
dc.subject.por.fl_str_mv |
Trato Gastrointestinal; WCE; classificação; transformers; ViT; DeiT. |
topic |
Trato Gastrointestinal; WCE; classificação; transformers; ViT; DeiT. GI Tract; WCE; classification; transformers; ViT; DeiT. Ciências da Computação |
dc.subject.eng.fl_str_mv |
GI Tract; WCE; classification; transformers; ViT; DeiT. |
dc.subject.cnpq.fl_str_mv |
Ciências da Computação |
description |
Inflammatory bowel diseases have a high incidence rate in the population, being one of the leading causes of hospitalization. Videos obtained through endoscopic capsules are essential for evaluating anomalies in the gastrointestinal tract. However, due to their duration, which can reach 10 hours, they demand great attention from the medical specialist in their analysis. Machine learning techniques have been successfully applied in developing computer-aided diagnostic systems since the 1990s, where Convolutional Neural Networks (CNNs) have become very successful for pattern recognition in images. CNNs use convolutions to extract features from the analyzed data, operating in a fixed- size window and thus having problems capturing pixel-level relationships considering the spatial and temporal domains. Otherwise, Transformers use attention mechanisms, where data is structured in a vector space that can aggregate information from adjacent data to determine meaning in a given context. This work proposes a computational method for analyzing images extracted from videos obtained by endoscopic capsules, using a transformer-based model that helps diagnose of gastrointestinal tract abnormalities. The proposed methodology was applied on 41511 WCE images from the Kvasir-Capsule dataset. In the experiments performed for the classification task of 11 classes, the best results were achieved by the DeiT model, which registered average rates of 99.75% of accuracy, 98.17% of precision, 98.31% of sensitivity and 98.06% of f1-score. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-04-11T16:40:24Z |
dc.date.issued.fl_str_mv |
2023-03-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LIMA, Daniel Lopes Soares. Classificação de imagens de exames de endoscopia por cápsula utilizando transformers. 2023. 57 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2023. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/tede/4635 |
identifier_str_mv |
LIMA, Daniel Lopes Soares. Classificação de imagens de exames de endoscopia por cápsula utilizando transformers. 2023. 57 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2023. |
url |
https://tedebc.ufma.br/jspui/handle/tede/tede/4635 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE INFORMÁTICA/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/4635/2/DanielLopesSoaresLima.pdf http://tedebc.ufma.br:8080/bitstream/tede/4635/1/license.txt |
bitstream.checksum.fl_str_mv |
f0e7e7ded57135aff3737c078b3882f8 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1809926213234327552 |