Biopolímeros sintetizados com mesocarpo de Attalea Speciosa Mart. ex Spreng e fibras vegetais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/tede/3011 |
Resumo: | Plastic materials are not always safe or environmentally friendly. Alternatively to these materials are biopolymers, which are polymers derived from living organisms or synthesized from renewable resources such as polysaccharides, proteins and lipids. These materials include babassu coconut mesocarp alginate, pectin and starch. Although these materials have promising application in the production of biopolymers, they are completely soluble in water, with high leaching tendency and low mechanical resistance. The combination of these and the use of plant fibers, such as fibers from the coconut of the bay-coconut and babassu coconut epicarp are being studied in this research, in order to improve the properties of these polymeric matrices, also considering the physical processes. and chemicals used in these fibers so that their dimensions are adequate and the fiber-to-matrix ratio is improved. Another important fact to study in the elaboration of biopolymers is the choice of plasticizers. In polysaccharides, for example, the most commonly used plasticizers are polyols (such as glycerol - G). These plasticizers make biopolymers more hydrophilic which may contribute to increase the water permeability and the susceptibility of the matrix to the humidity of the environment. Alternatively, hydrophobic plasticizers (such as tributyl citrate - CT) will help reduce this behavior. Thus, this work aims to elaborate and characterize sodium alginate biopolymers with different plasticizers and the use of coconut babassu pectin, alginate and mesocarp as base compounds with incorporation of natural plant fibers such as coconut-bay mesocarp and epicarp of babassu coconut in order to provide good mechanical, thermal, physical resistance and low leaching/solubilization tendency. The biopolymers were made according to the casting technique, in which a filmogenic solution was prepared and poured on a support, subsequently dried and stored at a relative humidity of 52%. G-plasticized alginate biopolymers were more hygroscopic than those with CT or CT / G mixtures. Plasticizer CT has made the water-soluble biopolymers with better mechanical properties. Sorption isotherms were well adjusted to the GAB model, with R2 close to 1 and low relative mean deviation. All biopolymers showed a single sharp Tg peak, showing higher values in the presence of CT. In the article of pectin with the fibers of the coconut from the bay of coconut, two experimental designs were applied for the treatment of the fibers (in natura fibers and chemically treated with 5% NaOH - m/m). The chemical treatment was efficient to partially remove hemicellulose and lignin from the fibers, with peaks reduction of ~ 1700 cm-1 related to these substances; the fibers caused more stable films to solubilization and leaching. Formulations with 9 g pectin/2 g fiber and 5 g pectin/0.5 g fiber were recommended as the selected conditions. Biopolymers formulated with 9 g of pectin/2 g of fibers showed the best results in tensile strength and elongation at break (2.35 MPa and 7.31%, respectively) for the treated fibers. In the mesocarp alginate article with babassu coconut epicarp fibers an experimental design of mixtures was applied, in which formulations 11 and 13 were selected. These formulations were subjected to a second cross-linking step which confirmed that the material had a low tendency to water absorption and compact and relatively homogeneous microstructure for fiber content. The best formulations have the potential to be applied to pilot tests and industrially produced. |
id |
UFMA_975d22b1cb220f2edfc467724197f15c |
---|---|
oai_identifier_str |
oai:tede2:tede/3011 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
BARROS FILHO, Allan Kardec D.340225893-53http://lattes.cnpq.br/0492330410079141SANTANA, Audirene Amorim880372743-49http://lattes.cnpq.br/7431678688628387BARROS FILHO, Allan Kardec D.http://lattes.cnpq.br/0492330410079141BORGES, Antônio Carlos Romãohttp://lattes.cnpq.br/4315209704773266CRUZ, Glauberhttp://lattes.cnpq.br/5194234696644344BORGES, Ferdinando Marco Rodrigueshttp://lattes.cnpq.br/6492640007982658MOUCHREK FILHO, Victor Eliashttp://lattes.cnpq.br/2381183158978639833829173-00http://lattes.cnpq.br/8697027182338512PAIXÃO, Louryval Coelho2020-01-27T14:28:33Z2019-12-16PAIXÃO, Louryval Coelho. Biopolímeros sintetizados com mesocarpo de Attalea Speciosa Mart. ex Spreng e fibras vegetais. 2019. 146 f. Tese (Programa de Pós-Graduação em Biotecnologia - Renorbio/CCBS) - Universidade Federal do Maranhão, São Luís, 2019.https://tedebc.ufma.br/jspui/handle/tede/tede/3011Plastic materials are not always safe or environmentally friendly. Alternatively to these materials are biopolymers, which are polymers derived from living organisms or synthesized from renewable resources such as polysaccharides, proteins and lipids. These materials include babassu coconut mesocarp alginate, pectin and starch. Although these materials have promising application in the production of biopolymers, they are completely soluble in water, with high leaching tendency and low mechanical resistance. The combination of these and the use of plant fibers, such as fibers from the coconut of the bay-coconut and babassu coconut epicarp are being studied in this research, in order to improve the properties of these polymeric matrices, also considering the physical processes. and chemicals used in these fibers so that their dimensions are adequate and the fiber-to-matrix ratio is improved. Another important fact to study in the elaboration of biopolymers is the choice of plasticizers. In polysaccharides, for example, the most commonly used plasticizers are polyols (such as glycerol - G). These plasticizers make biopolymers more hydrophilic which may contribute to increase the water permeability and the susceptibility of the matrix to the humidity of the environment. Alternatively, hydrophobic plasticizers (such as tributyl citrate - CT) will help reduce this behavior. Thus, this work aims to elaborate and characterize sodium alginate biopolymers with different plasticizers and the use of coconut babassu pectin, alginate and mesocarp as base compounds with incorporation of natural plant fibers such as coconut-bay mesocarp and epicarp of babassu coconut in order to provide good mechanical, thermal, physical resistance and low leaching/solubilization tendency. The biopolymers were made according to the casting technique, in which a filmogenic solution was prepared and poured on a support, subsequently dried and stored at a relative humidity of 52%. G-plasticized alginate biopolymers were more hygroscopic than those with CT or CT / G mixtures. Plasticizer CT has made the water-soluble biopolymers with better mechanical properties. Sorption isotherms were well adjusted to the GAB model, with R2 close to 1 and low relative mean deviation. All biopolymers showed a single sharp Tg peak, showing higher values in the presence of CT. In the article of pectin with the fibers of the coconut from the bay of coconut, two experimental designs were applied for the treatment of the fibers (in natura fibers and chemically treated with 5% NaOH - m/m). The chemical treatment was efficient to partially remove hemicellulose and lignin from the fibers, with peaks reduction of ~ 1700 cm-1 related to these substances; the fibers caused more stable films to solubilization and leaching. Formulations with 9 g pectin/2 g fiber and 5 g pectin/0.5 g fiber were recommended as the selected conditions. Biopolymers formulated with 9 g of pectin/2 g of fibers showed the best results in tensile strength and elongation at break (2.35 MPa and 7.31%, respectively) for the treated fibers. In the mesocarp alginate article with babassu coconut epicarp fibers an experimental design of mixtures was applied, in which formulations 11 and 13 were selected. These formulations were subjected to a second cross-linking step which confirmed that the material had a low tendency to water absorption and compact and relatively homogeneous microstructure for fiber content. The best formulations have the potential to be applied to pilot tests and industrially produced.Os materiais poliméricos não biodegradáveis, proveniente de fontes fósseis, nem sempre são seguros ou amigo do meio ambiente. Como alternativa a esses materiais, estão os biopolímeros, que são polímeros derivados de organismos vivos ou sintetizada a partir de recursos renováveis, tais como polissacarídeos, proteínas e lipídios. Dentre estes materiais estão o alginato, pectina e amido de mesocarpo de coco babaçu. Apesar destes materiais apresentarem aplicação promissora na produção de biopolímeros, eles se mostram completamente solúveis em água, com alta tendência a lixiviação e baixa resistência mecânica. A combinação entre eles e o uso de fibras vegetais, tais como fibras do mesocarpo de coco-da-baía e epicarpo de coco babaçu estão sendo estudadas nesta pesquisa, para que se aprimorem as propriedades destas matrizes poliméricas, tendo em vista também os processos físicos e químicos usados nestas fibras de forma que suas dimensões sejam adequadas e que a relação fibra-matriz seja aprimorada. Outro fato importante a se estudar na elaboração dos biopolímeros é a escolha dos plastificantes. Nos polissacarídeos, por exemplo, os plastificantes mais utilizados são os polióis (como o glicerol - G). Esses plastificantes tornam os biopolímeros mais hidrofílicos o que pode contribuir para aumentar a permeabilidade à água e a susceptibilidade da matriz à umidade do ambiente. Como alternativa, estão os plastificantes hidrofóbicos (como o citrato de tributila - CT), que irão ajudar a reduzir esse comportamento. Assim, este trabalho tem como objetivo elaborar e caracterizar biopolímeros de alginato de sódio com diferentes plastificantes e o uso da pectina, alginato e mesocarpo de coco babaçu como compostos base com incorporação de fibras vegetais naturais como mesocarpo de coco-da-baía e epicarpo de coco babaçu, a fim de conferir boa resistência mecânica, térmica, física e baixa tendência de lixiviação/solubilização. Os biopolímeros foram confeccionados segundo a técnica casting, na qual uma solução filmogênica foi preparada e vertida sobre um suporte, posteriormente levado à secagem e armazenados à umidade relativa de 52%. Os biopolímeros de alginato plastificados com G foram mais higroscópicos do que os com CT ou com misturas de CT/G. O plastificante CT tornou os biopolímeros insolúveis em água e com melhores propriedades mecânicas. As isotermas de sorção foram bem ajustadas ao modelo GAB, apresentando R2 próximo de 1 e baixo desvio médio relativo. Todos os biopolímeros apresentaram um único pico de Tg acentuado, mostrando valores mais altos na presença de CT. No artigo de pectina com as fibras do mesocarpo de coco-da-baía, foram aplicados dois planejamentos experimentais para o tratamento das fibras (fibras in natura e tratadas quimicamente com NaOH 5% - m/m). O tratamento químico mostrou-se eficiente na remoção parcial da hemicelulose e lignina das fibras, com diminuição dos picos em ~1700 cm-1 relacionado a estas substâncias; as fibras ocasionaram filmes mais estáveis a solubilização e lixiviação. As formulações com 9 g de pectina/2 g de fibras e 5 g de pectina/0,5 g de fibras foram recomendadas como sendo as condições selecionadas. Os biopolímeros formulados com 9 g de pectina/2 g de fibras, apresentaram os melhores resultados nas propriedades de tensão e alongamento na ruptura (2,35 MPa e 7,31%, respectivamente) para as fibras tratadas. No artigo de alginato com mesocarpo e fibras de epicarpo de coco babaçu foi aplicado um planejamento experimental de misturas, na qual foram selecionadas as formulações 11 e 13. Estas formulações foram submetidas a uma segunda etapa de reticulação que confirmaram que o material tinha baixa tendência a absorção de água e microestrutura compacta e relativamente homogênea, quanto ao conteúdo de fibras. As melhores formulações têm potencial para serem aplicadas a testes pilotos e produzidas industrialmente.Submitted by Sheila MONTEIRO (sheila.monteiro@ufma.br) on 2020-01-27T14:28:33Z No. of bitstreams: 1 LOURYVAL-PAIXÃO.pdf: 4009755 bytes, checksum: 6ccefbb87c6a23885496c3cf263da1d0 (MD5)Made available in DSpace on 2020-01-27T14:28:33Z (GMT). No. of bitstreams: 1 LOURYVAL-PAIXÃO.pdf: 4009755 bytes, checksum: 6ccefbb87c6a23885496c3cf263da1d0 (MD5) Previous issue date: 2019-12-16Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico do Maranhão – FAPEMAConselho Nacional de Desenvolvimento Científico e Tecnológico – CNPqapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA - RENORBIO/CCBSUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETAlginatoPectinaMesocarpo de coco babaçuFibras vegetaisPropriedades mecânicas, físicas e térmicasAlginatePectinBabassu coconut mesocarpVegetable fibersMechanical, physical and thermal propertiesMateriais não MetálicosBiopolímeros sintetizados com mesocarpo de Attalea Speciosa Mart. ex Spreng e fibras vegetaisBiopolymers synthesized with mesocarp from Attalea Speciosa Mart. ex Spreng and vegetable fibersinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALLOURYVAL-PAIXÃO.pdfLOURYVAL-PAIXÃO.pdfapplication/pdf4009755http://tedebc.ufma.br:8080/bitstream/tede/3011/2/LOURYVAL-PAIX%C3%83O.pdf6ccefbb87c6a23885496c3cf263da1d0MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/3011/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/30112020-01-27 11:28:33.109oai:tede2:tede/3011IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312020-01-27T14:28:33Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Biopolímeros sintetizados com mesocarpo de Attalea Speciosa Mart. ex Spreng e fibras vegetais |
dc.title.alternative.eng.fl_str_mv |
Biopolymers synthesized with mesocarp from Attalea Speciosa Mart. ex Spreng and vegetable fibers |
title |
Biopolímeros sintetizados com mesocarpo de Attalea Speciosa Mart. ex Spreng e fibras vegetais |
spellingShingle |
Biopolímeros sintetizados com mesocarpo de Attalea Speciosa Mart. ex Spreng e fibras vegetais PAIXÃO, Louryval Coelho Alginato Pectina Mesocarpo de coco babaçu Fibras vegetais Propriedades mecânicas, físicas e térmicas Alginate Pectin Babassu coconut mesocarp Vegetable fibers Mechanical, physical and thermal properties Materiais não Metálicos |
title_short |
Biopolímeros sintetizados com mesocarpo de Attalea Speciosa Mart. ex Spreng e fibras vegetais |
title_full |
Biopolímeros sintetizados com mesocarpo de Attalea Speciosa Mart. ex Spreng e fibras vegetais |
title_fullStr |
Biopolímeros sintetizados com mesocarpo de Attalea Speciosa Mart. ex Spreng e fibras vegetais |
title_full_unstemmed |
Biopolímeros sintetizados com mesocarpo de Attalea Speciosa Mart. ex Spreng e fibras vegetais |
title_sort |
Biopolímeros sintetizados com mesocarpo de Attalea Speciosa Mart. ex Spreng e fibras vegetais |
author |
PAIXÃO, Louryval Coelho |
author_facet |
PAIXÃO, Louryval Coelho |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
BARROS FILHO, Allan Kardec D. |
dc.contributor.advisor1ID.fl_str_mv |
340225893-53 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0492330410079141 |
dc.contributor.advisor-co1.fl_str_mv |
SANTANA, Audirene Amorim |
dc.contributor.advisor-co1ID.fl_str_mv |
880372743-49 |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/7431678688628387 |
dc.contributor.referee1.fl_str_mv |
BARROS FILHO, Allan Kardec D. |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/0492330410079141 |
dc.contributor.referee2.fl_str_mv |
BORGES, Antônio Carlos Romão |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/4315209704773266 |
dc.contributor.referee3.fl_str_mv |
CRUZ, Glauber |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/5194234696644344 |
dc.contributor.referee4.fl_str_mv |
BORGES, Ferdinando Marco Rodrigues |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/6492640007982658 |
dc.contributor.referee5.fl_str_mv |
MOUCHREK FILHO, Victor Elias |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/2381183158978639 |
dc.contributor.authorID.fl_str_mv |
833829173-00 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8697027182338512 |
dc.contributor.author.fl_str_mv |
PAIXÃO, Louryval Coelho |
contributor_str_mv |
BARROS FILHO, Allan Kardec D. SANTANA, Audirene Amorim BARROS FILHO, Allan Kardec D. BORGES, Antônio Carlos Romão CRUZ, Glauber BORGES, Ferdinando Marco Rodrigues MOUCHREK FILHO, Victor Elias |
dc.subject.por.fl_str_mv |
Alginato Pectina Mesocarpo de coco babaçu Fibras vegetais Propriedades mecânicas, físicas e térmicas |
topic |
Alginato Pectina Mesocarpo de coco babaçu Fibras vegetais Propriedades mecânicas, físicas e térmicas Alginate Pectin Babassu coconut mesocarp Vegetable fibers Mechanical, physical and thermal properties Materiais não Metálicos |
dc.subject.eng.fl_str_mv |
Alginate Pectin Babassu coconut mesocarp Vegetable fibers Mechanical, physical and thermal properties |
dc.subject.cnpq.fl_str_mv |
Materiais não Metálicos |
description |
Plastic materials are not always safe or environmentally friendly. Alternatively to these materials are biopolymers, which are polymers derived from living organisms or synthesized from renewable resources such as polysaccharides, proteins and lipids. These materials include babassu coconut mesocarp alginate, pectin and starch. Although these materials have promising application in the production of biopolymers, they are completely soluble in water, with high leaching tendency and low mechanical resistance. The combination of these and the use of plant fibers, such as fibers from the coconut of the bay-coconut and babassu coconut epicarp are being studied in this research, in order to improve the properties of these polymeric matrices, also considering the physical processes. and chemicals used in these fibers so that their dimensions are adequate and the fiber-to-matrix ratio is improved. Another important fact to study in the elaboration of biopolymers is the choice of plasticizers. In polysaccharides, for example, the most commonly used plasticizers are polyols (such as glycerol - G). These plasticizers make biopolymers more hydrophilic which may contribute to increase the water permeability and the susceptibility of the matrix to the humidity of the environment. Alternatively, hydrophobic plasticizers (such as tributyl citrate - CT) will help reduce this behavior. Thus, this work aims to elaborate and characterize sodium alginate biopolymers with different plasticizers and the use of coconut babassu pectin, alginate and mesocarp as base compounds with incorporation of natural plant fibers such as coconut-bay mesocarp and epicarp of babassu coconut in order to provide good mechanical, thermal, physical resistance and low leaching/solubilization tendency. The biopolymers were made according to the casting technique, in which a filmogenic solution was prepared and poured on a support, subsequently dried and stored at a relative humidity of 52%. G-plasticized alginate biopolymers were more hygroscopic than those with CT or CT / G mixtures. Plasticizer CT has made the water-soluble biopolymers with better mechanical properties. Sorption isotherms were well adjusted to the GAB model, with R2 close to 1 and low relative mean deviation. All biopolymers showed a single sharp Tg peak, showing higher values in the presence of CT. In the article of pectin with the fibers of the coconut from the bay of coconut, two experimental designs were applied for the treatment of the fibers (in natura fibers and chemically treated with 5% NaOH - m/m). The chemical treatment was efficient to partially remove hemicellulose and lignin from the fibers, with peaks reduction of ~ 1700 cm-1 related to these substances; the fibers caused more stable films to solubilization and leaching. Formulations with 9 g pectin/2 g fiber and 5 g pectin/0.5 g fiber were recommended as the selected conditions. Biopolymers formulated with 9 g of pectin/2 g of fibers showed the best results in tensile strength and elongation at break (2.35 MPa and 7.31%, respectively) for the treated fibers. In the mesocarp alginate article with babassu coconut epicarp fibers an experimental design of mixtures was applied, in which formulations 11 and 13 were selected. These formulations were subjected to a second cross-linking step which confirmed that the material had a low tendency to water absorption and compact and relatively homogeneous microstructure for fiber content. The best formulations have the potential to be applied to pilot tests and industrially produced. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-12-16 |
dc.date.accessioned.fl_str_mv |
2020-01-27T14:28:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PAIXÃO, Louryval Coelho. Biopolímeros sintetizados com mesocarpo de Attalea Speciosa Mart. ex Spreng e fibras vegetais. 2019. 146 f. Tese (Programa de Pós-Graduação em Biotecnologia - Renorbio/CCBS) - Universidade Federal do Maranhão, São Luís, 2019. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/tede/3011 |
identifier_str_mv |
PAIXÃO, Louryval Coelho. Biopolímeros sintetizados com mesocarpo de Attalea Speciosa Mart. ex Spreng e fibras vegetais. 2019. 146 f. Tese (Programa de Pós-Graduação em Biotecnologia - Renorbio/CCBS) - Universidade Federal do Maranhão, São Luís, 2019. |
url |
https://tedebc.ufma.br/jspui/handle/tede/tede/3011 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA - RENORBIO/CCBS |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/3011/2/LOURYVAL-PAIX%C3%83O.pdf http://tedebc.ufma.br:8080/bitstream/tede/3011/1/license.txt |
bitstream.checksum.fl_str_mv |
6ccefbb87c6a23885496c3cf263da1d0 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1809926195588890624 |