Deep CollabNet: Rede Deep Learning Colaborativa
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/tede/2318 |
Resumo: | In order to improve the learning of deep neural networks, this work presents the CollabNet network, a new method of insertion of new layers into a Deep FeedForward neural networks, changing the traditional stacked autoencoders method. This new way of insertion is considered collaborative and seeks to improve training against approaches based on stacked autoencoders. In this new approach, the insertion of a new layer is performed in a coordinated and gradual manner, keeping under designer’s control the influence of the new layer on the training and no longer as random and stochastic as in traditional stacking. The collaboration proposed in this work consists of making the learning of the new inserted layer continues the learning obtained by the previous layers, without prejudice to the global learning of the network. In this way, the new inserted layer collaborates with the previous layers and the set of layers works in a way more aligned to the learning. CollabNet was tested in the Wisconsin Breast Cancer Dataset, obtaining satisfactory and promising results. |
id |
UFMA_986ed3697f0e1711c2527d40ec8483b2 |
---|---|
oai_identifier_str |
oai:tede2:tede/2318 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
ALMEIDA NETO, Areolino de279.344.543-68http://lattes.cnpq.br/8041675571955870BRAZ JUNIOR, GeraldoSANTOS, Sérgio Ronaldo Barros dosALMEIDA, Will Ribamar Mendeshttp://lattes.cnpq.br/1585031325412318LIMA JUNIOR, Moisés Laurence de Freitas2018-07-20T18:44:54Z2018-05-02LIMA JUNIOR, Moisés Laurence de Freitas. Deep CollabNet: Rede Deep Learning Colaborativa. 2018. 50 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2018.https://tedebc.ufma.br/jspui/handle/tede/tede/2318In order to improve the learning of deep neural networks, this work presents the CollabNet network, a new method of insertion of new layers into a Deep FeedForward neural networks, changing the traditional stacked autoencoders method. This new way of insertion is considered collaborative and seeks to improve training against approaches based on stacked autoencoders. In this new approach, the insertion of a new layer is performed in a coordinated and gradual manner, keeping under designer’s control the influence of the new layer on the training and no longer as random and stochastic as in traditional stacking. The collaboration proposed in this work consists of making the learning of the new inserted layer continues the learning obtained by the previous layers, without prejudice to the global learning of the network. In this way, the new inserted layer collaborates with the previous layers and the set of layers works in a way more aligned to the learning. CollabNet was tested in the Wisconsin Breast Cancer Dataset, obtaining satisfactory and promising results.Visando aprimorar o aprendizado de redes neurais profundas, neste trabalho é proposta a rede CollabNet, que consiste em um novo método de inserção de novas camadas escondidas em redes neurais do tipo Deep FeedForward, alterando o método tradicional de empilhamento de autoencoders. A nova forma de inserção é considerada colaborativa e busca a melhoria do treinamento em relação a abordagens baseadas em autoencoders empilhados. Nesta nova abordagem, a inserção de uma nova camada é realizada de maneira coordenada e gradual, mantendo sob controle do projetista a influência dessa nova camada no treinamento e não mais de modo aleatório e estocástico como no empilhamento tradicional. A colaboração proposta neste trabalho consiste em fazer com que o aprendizado da camada recém inserida continue o aprendizado obtido pelas camadas anteriores, sem prejuízo ao aprendizado global da rede. Desta forma, a camada recém inserida colabora com as camadas anteriores e o conjunto trabalha de forma mais alinhada ao aprendizado. A CollabNet foi testada na base de dados Wisconsin Breast Cancer Dataset, obtendo resultados satisfatórios e promissores.Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2018-07-20T18:44:54Z No. of bitstreams: 1 MoisesLimaJunior.pdf: 2087480 bytes, checksum: d4ee02404c1afdd9e6267149bcaa6144 (MD5)Made available in DSpace on 2018-07-20T18:44:54Z (GMT). No. of bitstreams: 1 MoisesLimaJunior.pdf: 2087480 bytes, checksum: d4ee02404c1afdd9e6267149bcaa6144 (MD5) Previous issue date: 2018-05-02application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETAprendizado profundoDeep FeedforwardDeep Stacked AutoencoderDeep LearningCiência da ComputaçãoDeep CollabNet: Rede Deep Learning ColaborativaDeep CollabNet: Collaborative Deep Learning Networkinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALMoisesLimaJunior.pdfMoisesLimaJunior.pdfapplication/pdf2087480http://tedebc.ufma.br:8080/bitstream/tede/2318/2/MoisesLimaJunior.pdfd4ee02404c1afdd9e6267149bcaa6144MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/2318/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/23182018-07-20 15:44:54.573oai:tede2:tede/2318IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312018-07-20T18:44:54Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Deep CollabNet: Rede Deep Learning Colaborativa |
dc.title.alternative.eng.fl_str_mv |
Deep CollabNet: Collaborative Deep Learning Network |
title |
Deep CollabNet: Rede Deep Learning Colaborativa |
spellingShingle |
Deep CollabNet: Rede Deep Learning Colaborativa LIMA JUNIOR, Moisés Laurence de Freitas Aprendizado profundo Deep Feedforward Deep Stacked Autoencoder Deep Learning Ciência da Computação |
title_short |
Deep CollabNet: Rede Deep Learning Colaborativa |
title_full |
Deep CollabNet: Rede Deep Learning Colaborativa |
title_fullStr |
Deep CollabNet: Rede Deep Learning Colaborativa |
title_full_unstemmed |
Deep CollabNet: Rede Deep Learning Colaborativa |
title_sort |
Deep CollabNet: Rede Deep Learning Colaborativa |
author |
LIMA JUNIOR, Moisés Laurence de Freitas |
author_facet |
LIMA JUNIOR, Moisés Laurence de Freitas |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
ALMEIDA NETO, Areolino de |
dc.contributor.advisor1ID.fl_str_mv |
279.344.543-68 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8041675571955870 |
dc.contributor.referee1.fl_str_mv |
BRAZ JUNIOR, Geraldo |
dc.contributor.referee2.fl_str_mv |
SANTOS, Sérgio Ronaldo Barros dos |
dc.contributor.referee3.fl_str_mv |
ALMEIDA, Will Ribamar Mendes |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1585031325412318 |
dc.contributor.author.fl_str_mv |
LIMA JUNIOR, Moisés Laurence de Freitas |
contributor_str_mv |
ALMEIDA NETO, Areolino de BRAZ JUNIOR, Geraldo SANTOS, Sérgio Ronaldo Barros dos ALMEIDA, Will Ribamar Mendes |
dc.subject.por.fl_str_mv |
Aprendizado profundo |
topic |
Aprendizado profundo Deep Feedforward Deep Stacked Autoencoder Deep Learning Ciência da Computação |
dc.subject.eng.fl_str_mv |
Deep Feedforward Deep Stacked Autoencoder Deep Learning |
dc.subject.cnpq.fl_str_mv |
Ciência da Computação |
description |
In order to improve the learning of deep neural networks, this work presents the CollabNet network, a new method of insertion of new layers into a Deep FeedForward neural networks, changing the traditional stacked autoencoders method. This new way of insertion is considered collaborative and seeks to improve training against approaches based on stacked autoencoders. In this new approach, the insertion of a new layer is performed in a coordinated and gradual manner, keeping under designer’s control the influence of the new layer on the training and no longer as random and stochastic as in traditional stacking. The collaboration proposed in this work consists of making the learning of the new inserted layer continues the learning obtained by the previous layers, without prejudice to the global learning of the network. In this way, the new inserted layer collaborates with the previous layers and the set of layers works in a way more aligned to the learning. CollabNet was tested in the Wisconsin Breast Cancer Dataset, obtaining satisfactory and promising results. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-07-20T18:44:54Z |
dc.date.issued.fl_str_mv |
2018-05-02 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LIMA JUNIOR, Moisés Laurence de Freitas. Deep CollabNet: Rede Deep Learning Colaborativa. 2018. 50 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2018. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/tede/2318 |
identifier_str_mv |
LIMA JUNIOR, Moisés Laurence de Freitas. Deep CollabNet: Rede Deep Learning Colaborativa. 2018. 50 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2018. |
url |
https://tedebc.ufma.br/jspui/handle/tede/tede/2318 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE INFORMÁTICA/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/2318/2/MoisesLimaJunior.pdf http://tedebc.ufma.br:8080/bitstream/tede/2318/1/license.txt |
bitstream.checksum.fl_str_mv |
d4ee02404c1afdd9e6267149bcaa6144 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1809926190131052544 |