Deep CollabNet: Rede Deep Learning Colaborativa

Detalhes bibliográficos
Autor(a) principal: LIMA JUNIOR, Moisés Laurence de Freitas
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/2318
Resumo: In order to improve the learning of deep neural networks, this work presents the CollabNet network, a new method of insertion of new layers into a Deep FeedForward neural networks, changing the traditional stacked autoencoders method. This new way of insertion is considered collaborative and seeks to improve training against approaches based on stacked autoencoders. In this new approach, the insertion of a new layer is performed in a coordinated and gradual manner, keeping under designer’s control the influence of the new layer on the training and no longer as random and stochastic as in traditional stacking. The collaboration proposed in this work consists of making the learning of the new inserted layer continues the learning obtained by the previous layers, without prejudice to the global learning of the network. In this way, the new inserted layer collaborates with the previous layers and the set of layers works in a way more aligned to the learning. CollabNet was tested in the Wisconsin Breast Cancer Dataset, obtaining satisfactory and promising results.
id UFMA_986ed3697f0e1711c2527d40ec8483b2
oai_identifier_str oai:tede2:tede/2318
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling ALMEIDA NETO, Areolino de279.344.543-68http://lattes.cnpq.br/8041675571955870BRAZ JUNIOR, GeraldoSANTOS, Sérgio Ronaldo Barros dosALMEIDA, Will Ribamar Mendeshttp://lattes.cnpq.br/1585031325412318LIMA JUNIOR, Moisés Laurence de Freitas2018-07-20T18:44:54Z2018-05-02LIMA JUNIOR, Moisés Laurence de Freitas. Deep CollabNet: Rede Deep Learning Colaborativa. 2018. 50 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2018.https://tedebc.ufma.br/jspui/handle/tede/tede/2318In order to improve the learning of deep neural networks, this work presents the CollabNet network, a new method of insertion of new layers into a Deep FeedForward neural networks, changing the traditional stacked autoencoders method. This new way of insertion is considered collaborative and seeks to improve training against approaches based on stacked autoencoders. In this new approach, the insertion of a new layer is performed in a coordinated and gradual manner, keeping under designer’s control the influence of the new layer on the training and no longer as random and stochastic as in traditional stacking. The collaboration proposed in this work consists of making the learning of the new inserted layer continues the learning obtained by the previous layers, without prejudice to the global learning of the network. In this way, the new inserted layer collaborates with the previous layers and the set of layers works in a way more aligned to the learning. CollabNet was tested in the Wisconsin Breast Cancer Dataset, obtaining satisfactory and promising results.Visando aprimorar o aprendizado de redes neurais profundas, neste trabalho é proposta a rede CollabNet, que consiste em um novo método de inserção de novas camadas escondidas em redes neurais do tipo Deep FeedForward, alterando o método tradicional de empilhamento de autoencoders. A nova forma de inserção é considerada colaborativa e busca a melhoria do treinamento em relação a abordagens baseadas em autoencoders empilhados. Nesta nova abordagem, a inserção de uma nova camada é realizada de maneira coordenada e gradual, mantendo sob controle do projetista a influência dessa nova camada no treinamento e não mais de modo aleatório e estocástico como no empilhamento tradicional. A colaboração proposta neste trabalho consiste em fazer com que o aprendizado da camada recém inserida continue o aprendizado obtido pelas camadas anteriores, sem prejuízo ao aprendizado global da rede. Desta forma, a camada recém inserida colabora com as camadas anteriores e o conjunto trabalha de forma mais alinhada ao aprendizado. A CollabNet foi testada na base de dados Wisconsin Breast Cancer Dataset, obtendo resultados satisfatórios e promissores.Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2018-07-20T18:44:54Z No. of bitstreams: 1 MoisesLimaJunior.pdf: 2087480 bytes, checksum: d4ee02404c1afdd9e6267149bcaa6144 (MD5)Made available in DSpace on 2018-07-20T18:44:54Z (GMT). No. of bitstreams: 1 MoisesLimaJunior.pdf: 2087480 bytes, checksum: d4ee02404c1afdd9e6267149bcaa6144 (MD5) Previous issue date: 2018-05-02application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETAprendizado profundoDeep FeedforwardDeep Stacked AutoencoderDeep LearningCiência da ComputaçãoDeep CollabNet: Rede Deep Learning ColaborativaDeep CollabNet: Collaborative Deep Learning Networkinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALMoisesLimaJunior.pdfMoisesLimaJunior.pdfapplication/pdf2087480http://tedebc.ufma.br:8080/bitstream/tede/2318/2/MoisesLimaJunior.pdfd4ee02404c1afdd9e6267149bcaa6144MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/2318/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/23182018-07-20 15:44:54.573oai:tede2:tede/2318IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312018-07-20T18:44:54Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Deep CollabNet: Rede Deep Learning Colaborativa
dc.title.alternative.eng.fl_str_mv Deep CollabNet: Collaborative Deep Learning Network
title Deep CollabNet: Rede Deep Learning Colaborativa
spellingShingle Deep CollabNet: Rede Deep Learning Colaborativa
LIMA JUNIOR, Moisés Laurence de Freitas
Aprendizado profundo
Deep Feedforward
Deep Stacked Autoencoder
Deep Learning
Ciência da Computação
title_short Deep CollabNet: Rede Deep Learning Colaborativa
title_full Deep CollabNet: Rede Deep Learning Colaborativa
title_fullStr Deep CollabNet: Rede Deep Learning Colaborativa
title_full_unstemmed Deep CollabNet: Rede Deep Learning Colaborativa
title_sort Deep CollabNet: Rede Deep Learning Colaborativa
author LIMA JUNIOR, Moisés Laurence de Freitas
author_facet LIMA JUNIOR, Moisés Laurence de Freitas
author_role author
dc.contributor.advisor1.fl_str_mv ALMEIDA NETO, Areolino de
dc.contributor.advisor1ID.fl_str_mv 279.344.543-68
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8041675571955870
dc.contributor.referee1.fl_str_mv BRAZ JUNIOR, Geraldo
dc.contributor.referee2.fl_str_mv SANTOS, Sérgio Ronaldo Barros dos
dc.contributor.referee3.fl_str_mv ALMEIDA, Will Ribamar Mendes
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1585031325412318
dc.contributor.author.fl_str_mv LIMA JUNIOR, Moisés Laurence de Freitas
contributor_str_mv ALMEIDA NETO, Areolino de
BRAZ JUNIOR, Geraldo
SANTOS, Sérgio Ronaldo Barros dos
ALMEIDA, Will Ribamar Mendes
dc.subject.por.fl_str_mv Aprendizado profundo
topic Aprendizado profundo
Deep Feedforward
Deep Stacked Autoencoder
Deep Learning
Ciência da Computação
dc.subject.eng.fl_str_mv Deep Feedforward
Deep Stacked Autoencoder
Deep Learning
dc.subject.cnpq.fl_str_mv Ciência da Computação
description In order to improve the learning of deep neural networks, this work presents the CollabNet network, a new method of insertion of new layers into a Deep FeedForward neural networks, changing the traditional stacked autoencoders method. This new way of insertion is considered collaborative and seeks to improve training against approaches based on stacked autoencoders. In this new approach, the insertion of a new layer is performed in a coordinated and gradual manner, keeping under designer’s control the influence of the new layer on the training and no longer as random and stochastic as in traditional stacking. The collaboration proposed in this work consists of making the learning of the new inserted layer continues the learning obtained by the previous layers, without prejudice to the global learning of the network. In this way, the new inserted layer collaborates with the previous layers and the set of layers works in a way more aligned to the learning. CollabNet was tested in the Wisconsin Breast Cancer Dataset, obtaining satisfactory and promising results.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-07-20T18:44:54Z
dc.date.issued.fl_str_mv 2018-05-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LIMA JUNIOR, Moisés Laurence de Freitas. Deep CollabNet: Rede Deep Learning Colaborativa. 2018. 50 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2018.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/2318
identifier_str_mv LIMA JUNIOR, Moisés Laurence de Freitas. Deep CollabNet: Rede Deep Learning Colaborativa. 2018. 50 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2018.
url https://tedebc.ufma.br/jspui/handle/tede/tede/2318
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE INFORMÁTICA/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/2318/2/MoisesLimaJunior.pdf
http://tedebc.ufma.br:8080/bitstream/tede/2318/1/license.txt
bitstream.checksum.fl_str_mv d4ee02404c1afdd9e6267149bcaa6144
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926190131052544