Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/tede/4352 |
Resumo: | A Learning Object (LO) is a digital resource that can be used and reused or referenced during a process of technological support for teaching and learning. Despite being mostly multimedia, with audio, video, text and images synchronized with each other, some digital education resources have texts as one of their main elements in the teaching process, such as websites, texts, video classes, seminars, and the summarization of these texts can be a way of composing multimedia LOs. However, text summarization is a costly process in time and effort, creating the need to seek new ways to generate this content. The present work show a solution for the composition of multimedia LOs through automatic text summarizers based on Deep Learning Transformers models from two experiments: The first one composing LOs from educational texts in Portuguese using translators and text summarizers, in this experiment the results presented were positive and allow comparing the performance of summaries as generators of LO in text format; The second experiment presents an educational video summarization solution using the same Deep Learning models for subtitle summarization, the tests were performed using the EDUVSUM dataset in which it was possible to improve the results of the original article reaching 26.53% accuracy in a multi-class problem and average absolute error of 1.49 per video frame and 1.45 per video segment. |
id |
UFMA_a5a4419947c20df727786bcc1c84bffe |
---|---|
oai_identifier_str |
oai:tede2:tede/4352 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
SOARES NETO, Carlos de Salleshttp://lattes.cnpq.br/1556965324419871SOARES NETO, Carlos de Salleshttp://lattes.cnpq.br/1556965324419871OLIVEIRA, Alexandre César Muniz dehttp://lattes.cnpq.br/5225588855422632CARVALHO, Windson Viana dehttp://lattes.cnpq.br/1744732999336375http://lattes.cnpq.br/6752362728498223OLIVEIRA, Leandro Massetti Ribeiro2022-11-29T16:53:08Z2022-09-16OLIVEIRA, Leandro Massetti Ribeiro. Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning. 2022. 51 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2022.https://tedebc.ufma.br/jspui/handle/tede/tede/4352A Learning Object (LO) is a digital resource that can be used and reused or referenced during a process of technological support for teaching and learning. Despite being mostly multimedia, with audio, video, text and images synchronized with each other, some digital education resources have texts as one of their main elements in the teaching process, such as websites, texts, video classes, seminars, and the summarization of these texts can be a way of composing multimedia LOs. However, text summarization is a costly process in time and effort, creating the need to seek new ways to generate this content. The present work show a solution for the composition of multimedia LOs through automatic text summarizers based on Deep Learning Transformers models from two experiments: The first one composing LOs from educational texts in Portuguese using translators and text summarizers, in this experiment the results presented were positive and allow comparing the performance of summaries as generators of LO in text format; The second experiment presents an educational video summarization solution using the same Deep Learning models for subtitle summarization, the tests were performed using the EDUVSUM dataset in which it was possible to improve the results of the original article reaching 26.53% accuracy in a multi-class problem and average absolute error of 1.49 per video frame and 1.45 per video segment.Um Objeto de Aprendizagem (OA) é um recurso digital, que pode ser utilizado e reutilizado ou referenciado durante um processo de suporte tecnológico ao ensino e aprendizagem. Apesar de serem principalmente multimídia, com áudio, vídeo, texto e imagens sincronizados entre si, alguns recursos digitais de educação possuem textos como um de seus elementos principais no processo de ensino, como sites, textos, vídeo aulas, seminários, e a sumarização desses textos podem ser uma forma de composição de OAs multimídia. No entanto, a sumarização de textos é um processo oneroso em tempo e esforço, gerando a necessidade de buscar novas formas de gerar esse conteúdo. Este trabalho apresenta uma solução para a composição de OAs multimídia através de sumarizadores automáticos de texto baseados em modelos Deep Learning Transformers a partir de dois experimentos: O primeiro fazendo a composição de OAs a partir de textos educacionais na língua portuguesa utilizando tradutores e sumarizadores de texto, neste experimento os resultados apresentados foram positivos e permitem comparar o desempenho dos resumos como geradores de OA em formato de texto; O segundo experimento apresenta uma solução de sumarização de vídeos educacionais utilizando os mesmos modelos de Deep Learning para a sumarização da legenda, os testes foram realizados utilizando o dataset EDUVSUM no qual foi possível melhorar os resultados do artigo original alcançando 26,53% de acurácia em um problema multi-classe e erro absoluto médio de 1,49 por frame do vídeo e 1,45 por segmento de vídeo.Submitted by Daniella Santos (daniella.santos@ufma.br) on 2022-11-29T16:53:08Z No. of bitstreams: 1 Leandro_Massetti.pdf: 1387963 bytes, checksum: 008d7727d567705ea9c079f7106ab33c (MD5)Made available in DSpace on 2022-11-29T16:53:08Z (GMT). No. of bitstreams: 1 Leandro_Massetti.pdf: 1387963 bytes, checksum: 008d7727d567705ea9c079f7106ab33c (MD5) Previous issue date: 2022-09-16FAPEMAapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETsumarização de textos;objeto de aprendizagem;deep learning;transformers;text summarization,learning object,deep learning,transformers.Ciência da ComputaçãoComposição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learningComposition of multimedia learning objects through automatic text summarizers based on deep learning modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALLeandro_Massetti.pdfLeandro_Massetti.pdfapplication/pdf1387963http://tedebc.ufma.br:8080/bitstream/tede/4352/2/Leandro_Massetti.pdf008d7727d567705ea9c079f7106ab33cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/4352/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/43522022-11-29 13:53:08.588oai:tede2:tede/4352IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312022-11-29T16:53:08Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning |
dc.title.alternative.eng.fl_str_mv |
Composition of multimedia learning objects through automatic text summarizers based on deep learning models |
title |
Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning |
spellingShingle |
Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning OLIVEIRA, Leandro Massetti Ribeiro sumarização de textos; objeto de aprendizagem; deep learning; transformers; text summarization, learning object, deep learning, transformers. Ciência da Computação |
title_short |
Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning |
title_full |
Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning |
title_fullStr |
Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning |
title_full_unstemmed |
Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning |
title_sort |
Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning |
author |
OLIVEIRA, Leandro Massetti Ribeiro |
author_facet |
OLIVEIRA, Leandro Massetti Ribeiro |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
SOARES NETO, Carlos de Salles |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1556965324419871 |
dc.contributor.referee1.fl_str_mv |
SOARES NETO, Carlos de Salles |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/1556965324419871 |
dc.contributor.referee2.fl_str_mv |
OLIVEIRA, Alexandre César Muniz de |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/5225588855422632 |
dc.contributor.referee3.fl_str_mv |
CARVALHO, Windson Viana de |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/1744732999336375 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6752362728498223 |
dc.contributor.author.fl_str_mv |
OLIVEIRA, Leandro Massetti Ribeiro |
contributor_str_mv |
SOARES NETO, Carlos de Salles SOARES NETO, Carlos de Salles OLIVEIRA, Alexandre César Muniz de CARVALHO, Windson Viana de |
dc.subject.por.fl_str_mv |
sumarização de textos; objeto de aprendizagem; deep learning; transformers; |
topic |
sumarização de textos; objeto de aprendizagem; deep learning; transformers; text summarization, learning object, deep learning, transformers. Ciência da Computação |
dc.subject.eng.fl_str_mv |
text summarization, learning object, deep learning, transformers. |
dc.subject.cnpq.fl_str_mv |
Ciência da Computação |
description |
A Learning Object (LO) is a digital resource that can be used and reused or referenced during a process of technological support for teaching and learning. Despite being mostly multimedia, with audio, video, text and images synchronized with each other, some digital education resources have texts as one of their main elements in the teaching process, such as websites, texts, video classes, seminars, and the summarization of these texts can be a way of composing multimedia LOs. However, text summarization is a costly process in time and effort, creating the need to seek new ways to generate this content. The present work show a solution for the composition of multimedia LOs through automatic text summarizers based on Deep Learning Transformers models from two experiments: The first one composing LOs from educational texts in Portuguese using translators and text summarizers, in this experiment the results presented were positive and allow comparing the performance of summaries as generators of LO in text format; The second experiment presents an educational video summarization solution using the same Deep Learning models for subtitle summarization, the tests were performed using the EDUVSUM dataset in which it was possible to improve the results of the original article reaching 26.53% accuracy in a multi-class problem and average absolute error of 1.49 per video frame and 1.45 per video segment. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-11-29T16:53:08Z |
dc.date.issued.fl_str_mv |
2022-09-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
OLIVEIRA, Leandro Massetti Ribeiro. Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning. 2022. 51 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2022. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/tede/4352 |
identifier_str_mv |
OLIVEIRA, Leandro Massetti Ribeiro. Composição de objetos de aprendizagem multimídia através de sumarizadores automáticos de texto baseados em modelos deep learning. 2022. 51 f. Dissertação (Programa de Pós-Graduação em Ciência da Computação/CCET) - Universidade Federal do Maranhão, São Luís, 2022. |
url |
https://tedebc.ufma.br/jspui/handle/tede/tede/4352 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE INFORMÁTICA/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/4352/2/Leandro_Massetti.pdf http://tedebc.ufma.br:8080/bitstream/tede/4352/1/license.txt |
bitstream.checksum.fl_str_mv |
008d7727d567705ea9c079f7106ab33c 97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1809926209735229440 |