Metaheurísticas para geração de alvos para robôs exploratórios autônomos

Detalhes bibliográficos
Autor(a) principal: SANTOS, Raphael Gomes
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: http://tedebc.ufma.br:8080/jspui/handle/tede/1760
Resumo: Autonomous exploration, in robotics, can be defined as the act of moving into an unknown environment, at priori, while building up a map of the environment. A great deal of literature describes several problems that are relate to the strategy exploration: perception, location, trajectory control and mapping. This work aims to present an autonomous exploration algorithm based on metaheuristics. Therefore, the problem of autonomous exploration of mobile robots is formulated as an optimization problem, providing data for metaheuristics that are able to search points in the space of solutions that represent positions on the map under construction that best meet the objectives of the exploration. Metaheuristics are approximate methods that guarantee sufficiently good solutions to optimization problems. The proposal was implemented and incorporated as an optimization module in a simultaneous location and mapping system that was run on the Robot Operating System environment and proved to be able to guide a simulated robot without human intervention. Two optimization metaheuristics were implemented to guide target to simulated robot: Genetic Algorithm and Firefly Algorithm. Both algorithms have achieved good results, however the second one was able to guide robot by best trajectories.
id UFMA_b033cda478a2e616165d1626c1a64a70
oai_identifier_str oai:tede2:tede/1760
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling OLIVEIRA, Alexandre César Muniz de288.350.933-68035.348.823-26http://lattes.cnpq.br/3364015614240175SANTOS, Raphael Gomes2017-07-25T17:21:34Z2016-08-17SANTOS, Raphael Gomes. Metaheurísticas para geração de alvos para robôs exploratórios autônomos. 2016. 72 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2016.http://tedebc.ufma.br:8080/jspui/handle/tede/1760Autonomous exploration, in robotics, can be defined as the act of moving into an unknown environment, at priori, while building up a map of the environment. A great deal of literature describes several problems that are relate to the strategy exploration: perception, location, trajectory control and mapping. This work aims to present an autonomous exploration algorithm based on metaheuristics. Therefore, the problem of autonomous exploration of mobile robots is formulated as an optimization problem, providing data for metaheuristics that are able to search points in the space of solutions that represent positions on the map under construction that best meet the objectives of the exploration. Metaheuristics are approximate methods that guarantee sufficiently good solutions to optimization problems. The proposal was implemented and incorporated as an optimization module in a simultaneous location and mapping system that was run on the Robot Operating System environment and proved to be able to guide a simulated robot without human intervention. Two optimization metaheuristics were implemented to guide target to simulated robot: Genetic Algorithm and Firefly Algorithm. Both algorithms have achieved good results, however the second one was able to guide robot by best trajectories.Exploração autônoma, em robótica, pode ser definida como o ato de mover-se em um ambiente, a princípio desconhecido, enquanto constrói-se um mapa deste ambiente. Uma grande parte da literatura relata vários problemas que se relacionam com a estratégia de exploração: percepção, localização, trajetória, controle e mapeamento. Este trabalho visa apresentar um algoritmo de exploração autonoma baseado em metaheurísticas. Para tanto, o problema de exploração autônoma de robôs móveis é formulado como um problema de otimização, fornecendo dados para que metaheurísticas sejam capazes de buscar pontos no espaço de soluções que representam posições no mapa em construção que melhor satisfaçam os objetivos da exploração. Metaheuristicas são metodos aproximados que garantem soluções suficientemente boas para problemas de otimização. A proposta foi implementada e incorporada como um módulo de otimização em um sistema de localização e mapeamento simultâneos que foi executado em ambiente Robot Operating System e mostrou-se capaz de guiar um robô simulado sem intervenção humana. As metaheurísticas usadas foram o Algoritmo Genético e o Algoritmo de Vagalumes. Ambos os algoritmos obtiveram bons resultados, no entanto o Algoritmo de Vagalumes guiou o robô por trajetórias melhores.Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-07-25T17:21:34Z No. of bitstreams: 1 RaphaelSantos.pdf: 3718930 bytes, checksum: df335fd5562e8156000972c282fe9724 (MD5)Made available in DSpace on 2017-07-25T17:21:34Z (GMT). No. of bitstreams: 1 RaphaelSantos.pdf: 3718930 bytes, checksum: df335fd5562e8156000972c282fe9724 (MD5) Previous issue date: 2016-08-17application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCETUFMABrasilDEPARTAMENTO DE INFORMÁTICA/CCETExploração autônomaMetaheurísticaRobot Operating SystemMobile RoboticsAutonomous explorationOptimization metaheuristicsCiência da ComputaçãoMetaheurísticas para geração de alvos para robôs exploratórios autônomosMetaheuristics for generating targets for autonomous exploratory robotsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALRaphaelSantos.pdfRaphaelSantos.pdfapplication/pdf3718930http://tedebc.ufma.br:8080/bitstream/tede/1760/2/RaphaelSantos.pdfdf335fd5562e8156000972c282fe9724MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/1760/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/17602023-01-18 14:10:33.568oai:tede2:tede/1760IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312023-01-18T17:10:33Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Metaheurísticas para geração de alvos para robôs exploratórios autônomos
dc.title.alternative.eng.fl_str_mv Metaheuristics for generating targets for autonomous exploratory robots
title Metaheurísticas para geração de alvos para robôs exploratórios autônomos
spellingShingle Metaheurísticas para geração de alvos para robôs exploratórios autônomos
SANTOS, Raphael Gomes
Exploração autônoma
Metaheurística
Robot Operating System
Mobile Robotics
Autonomous exploration
Optimization metaheuristics
Ciência da Computação
title_short Metaheurísticas para geração de alvos para robôs exploratórios autônomos
title_full Metaheurísticas para geração de alvos para robôs exploratórios autônomos
title_fullStr Metaheurísticas para geração de alvos para robôs exploratórios autônomos
title_full_unstemmed Metaheurísticas para geração de alvos para robôs exploratórios autônomos
title_sort Metaheurísticas para geração de alvos para robôs exploratórios autônomos
author SANTOS, Raphael Gomes
author_facet SANTOS, Raphael Gomes
author_role author
dc.contributor.advisor1.fl_str_mv OLIVEIRA, Alexandre César Muniz de
dc.contributor.advisor1ID.fl_str_mv 288.350.933-68
dc.contributor.authorID.fl_str_mv 035.348.823-26
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3364015614240175
dc.contributor.author.fl_str_mv SANTOS, Raphael Gomes
contributor_str_mv OLIVEIRA, Alexandre César Muniz de
dc.subject.por.fl_str_mv Exploração autônoma
Metaheurística
topic Exploração autônoma
Metaheurística
Robot Operating System
Mobile Robotics
Autonomous exploration
Optimization metaheuristics
Ciência da Computação
dc.subject.eng.fl_str_mv Robot Operating System
Mobile Robotics
Autonomous exploration
Optimization metaheuristics
dc.subject.cnpq.fl_str_mv Ciência da Computação
description Autonomous exploration, in robotics, can be defined as the act of moving into an unknown environment, at priori, while building up a map of the environment. A great deal of literature describes several problems that are relate to the strategy exploration: perception, location, trajectory control and mapping. This work aims to present an autonomous exploration algorithm based on metaheuristics. Therefore, the problem of autonomous exploration of mobile robots is formulated as an optimization problem, providing data for metaheuristics that are able to search points in the space of solutions that represent positions on the map under construction that best meet the objectives of the exploration. Metaheuristics are approximate methods that guarantee sufficiently good solutions to optimization problems. The proposal was implemented and incorporated as an optimization module in a simultaneous location and mapping system that was run on the Robot Operating System environment and proved to be able to guide a simulated robot without human intervention. Two optimization metaheuristics were implemented to guide target to simulated robot: Genetic Algorithm and Firefly Algorithm. Both algorithms have achieved good results, however the second one was able to guide robot by best trajectories.
publishDate 2016
dc.date.issued.fl_str_mv 2016-08-17
dc.date.accessioned.fl_str_mv 2017-07-25T17:21:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Raphael Gomes. Metaheurísticas para geração de alvos para robôs exploratórios autônomos. 2016. 72 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2016.
dc.identifier.uri.fl_str_mv http://tedebc.ufma.br:8080/jspui/handle/tede/1760
identifier_str_mv SANTOS, Raphael Gomes. Metaheurísticas para geração de alvos para robôs exploratórios autônomos. 2016. 72 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Maranhão, São Luís, 2016.
url http://tedebc.ufma.br:8080/jspui/handle/tede/1760
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE INFORMÁTICA/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/1760/2/RaphaelSantos.pdf
http://tedebc.ufma.br:8080/bitstream/tede/1760/1/license.txt
bitstream.checksum.fl_str_mv df335fd5562e8156000972c282fe9724
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926187454038016