Caracterização das Hipsarritmias secundárias à Síndrome Congênita do Zika vírus e à Síndrome de West baseada em Momentos Conjuntos e Medidas de Entropia

Detalhes bibliográficos
Autor(a) principal: ROCHA, Priscila Lima
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/3840
Resumo: West Syndrome is a rare and severe form of childhood epilepsy characterized by triad: presence of spasms, cognitive developmental delay and the hipsarrhythmia pattern on electroencephalogram (EEG). Hipsarrhythmia is a specific chaotic morphology present in the interictal period of the EEG signal, studied and known by neurologists since 1841, through the description of West Syndrome (WS) and which has recently also been identified in the examinations of patients with Zika virus congenital syndrome (ZVCS). The hipsarrhythmia characterization in infants with microcephaly due Zika virus is still very superficial. Then, the question arises whether there is a difference between the hysarrhythmic pattern that occurs in those born with CZVS of those from WS. Since the emergence of ZVCS cases, many questions about the characterization of this disease are still open, among them, whether the hypsarrhythmia in ZVCS follows the same electroencephalographic pattern as the hypsarrhythmia in WS. In view of this, this work proposes the development of a computational methodology for analysis and differentiation, based on the time-frequency domain, between the chaotic hipsarrhythmia pattern found in EEG signals of patients with microcephaly caused by Zika virus and also found in patients diagnosed with West Syndrome. Analysis in the time-frequency domain is performed from the Wavelet Continuous Transform (CWT) which reveals the energy distribution of the EEG signal at different frequency scales over time. Three mother-wavelet functions are tested to determine the most appropriate function to represent EEG signals with hipsarrhythmia ZVCS and hipsarrhythmia WS. Considering the energy distribution profiles generated by CWT, four joint moments are obtained - joint mean - μ(t,f) , joint variance - σ 2 (t,f) , join skewness - λ(t,f) , and join kurtosis - κ(t,f) - and four entropy measures - Shannon, Log Energy, Norm, and Sure - to compose the attributes vector that representing the hypsarrhythmic signals under analysis. The performance of five classical types of machine learning algorithms are verified in classification using the k-fold cross validation and leave-one-patient-out cross validation methods. Discrimination results provided 78,08% accuracy, 85,55% sensitivity, 73,21% specificity, and AUC = 0,89 for the ANN classifier.
id UFMA_c1eb9e7a156b25f84fa413e90a19b16e
oai_identifier_str oai:tede2:tede/3840
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling BARROS FILHO, Allan Kardec Duailibehttp://lattes.cnpq.br/0492330410079141SILVA, Washington Luis Santoshttp://lattes.cnpq.br/2097264664222196BARROS FILHO, Allan Kardec Duailibehttp://lattes.cnpq.br/0492330410079141SILVA, Washington Luís Santoshttp://lattes.cnpq.br/2097264664222196PIRES, Danubia Soareshttp://lattes.cnpq.br/4739495583287970BARREIROS, Marta de Oliveirahttp://lattes.cnpq.br/2695239794047991SANTANA, Ewaldo Eder Carvalhohttp://lattes.cnpq.br/0660692009750374http://lattes.cnpq.br/0210192910474011ROCHA, Priscila Lima2022-07-11T17:05:28Z2022-05-31ROCHA, Priscila Lima. Caracterização das Hipsarritmias secundárias à Síndrome Congênita do Zika vírus e à Síndrome de West baseada em Momentos Conjuntos e Medidas de Entropia. 2022. 129 f. Tese (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2022.https://tedebc.ufma.br/jspui/handle/tede/tede/3840West Syndrome is a rare and severe form of childhood epilepsy characterized by triad: presence of spasms, cognitive developmental delay and the hipsarrhythmia pattern on electroencephalogram (EEG). Hipsarrhythmia is a specific chaotic morphology present in the interictal period of the EEG signal, studied and known by neurologists since 1841, through the description of West Syndrome (WS) and which has recently also been identified in the examinations of patients with Zika virus congenital syndrome (ZVCS). The hipsarrhythmia characterization in infants with microcephaly due Zika virus is still very superficial. Then, the question arises whether there is a difference between the hysarrhythmic pattern that occurs in those born with CZVS of those from WS. Since the emergence of ZVCS cases, many questions about the characterization of this disease are still open, among them, whether the hypsarrhythmia in ZVCS follows the same electroencephalographic pattern as the hypsarrhythmia in WS. In view of this, this work proposes the development of a computational methodology for analysis and differentiation, based on the time-frequency domain, between the chaotic hipsarrhythmia pattern found in EEG signals of patients with microcephaly caused by Zika virus and also found in patients diagnosed with West Syndrome. Analysis in the time-frequency domain is performed from the Wavelet Continuous Transform (CWT) which reveals the energy distribution of the EEG signal at different frequency scales over time. Three mother-wavelet functions are tested to determine the most appropriate function to represent EEG signals with hipsarrhythmia ZVCS and hipsarrhythmia WS. Considering the energy distribution profiles generated by CWT, four joint moments are obtained - joint mean - μ(t,f) , joint variance - σ 2 (t,f) , join skewness - λ(t,f) , and join kurtosis - κ(t,f) - and four entropy measures - Shannon, Log Energy, Norm, and Sure - to compose the attributes vector that representing the hypsarrhythmic signals under analysis. The performance of five classical types of machine learning algorithms are verified in classification using the k-fold cross validation and leave-one-patient-out cross validation methods. Discrimination results provided 78,08% accuracy, 85,55% sensitivity, 73,21% specificity, and AUC = 0,89 for the ANN classifier.A Síndrome de West é uma rara e severa forma de epilepsia da infância caracterizada pela tríade: presença de espamos, retardo no desenvolvimento cognitivo e o padrão de hipsarritmia no exame de eletroencefalograma (EEG). A hipsarritmia é uma morfologia caótica específica presente no período interictal do sinal de EEG, estudada e conhecida pelos neurologistas desde 1841, por meio da descrição da Síndrome de West (SW) e que, recentemente, também foi identificada nos exames dos pacientes com a Síndrome Congênita do Zika vírus (SCZV). A caracterização da hipsarritmia nos lactentes com microcefalia pelo Zika vírus ainda são bem superficiais. Então, levanta-se o questionamento se há diferença entre o padrão hipsarrítmico que ocorre nos nascidos com a SCZV daqueles provenientes da SW. Desde o surgimento dos casos de microcefalia SCZV, muitas questões sobre a caracterização desta doença ainda estão em aberto, dentre elas, determinar se a hipsarritmia na SCZV segue o mesmo padrão eletroencefalográfico da hipsarritmia da SW. Diante disto, neste trabalho se propõe o desenvolvimento de uma metodologia computacional para análise e diferenciação, baseada no domínio tempo-frequência, entre o padrão caótico de hipsarritmia encontrado nos sinais de EEG de pacientes com microcefalia causada pelo Zika vírus e também encontrado em pacientes diagnosticados com a Síndrome de West. A análise no domínio tempo-frequência é realizada a partir da Transformada Contínua Wavelet (TCW) que revela a distribuição de energia do sinal de EEG em diferentes escalas de frequência ao longo do tempo. Três funções wavelet-mãe são testadas para determinar a função mais apropriada para representar os sinais de EEG com hipsarritmia SCZV e hipsarritmia SW. Considerando os perfis de distribuição de energia gerados pela TCW, são obtidos quatro momentos conjuntos - média conjunta - μ(t,f) , variância conjunta - σ 2 (t,f) , assimetria conjunta - λ(t,f) e curtose conjunta - κ(t,f) - e quatro medidas de entropia - Shannon, Log Energia, Norma e Sure - para compor o vetor de atributos representativos dos sinais hipsarrítmicos em análise. A classificação entre os dois padrões em análise foi realizada a partir da verificação do desempenho de cinco tipos clássicos de algoritmos de aprendizagem de máquina, utilizando os métodos de validação cruzada k-fold e leave- one-patient-out. As métricas de acurácia, sensibilidade, especificidade, área sob a curva ROC, coeficiente Cohen’s kappa (κ) e Matthews correlation coefficient (MCC) são obtidas para estes algoritmos. Os resultados alcançados para o classificador Rede Neural Artificial foram 78,08% de acurácia, 85,55% de sensibilidade, 73,21% de especificidade, AUC = 0,89, κ = 0,5616 e MCC = 0,5765 para o método de validação leave-one-patient-out.Submitted by Jonathan Sousa de Almeida (jonathan.sousa@ufma.br) on 2022-07-11T17:05:28Z No. of bitstreams: 1 PRISCILALIMAROCHA.pdf: 6661794 bytes, checksum: a15d04794ce3ffe8c4b8c47dc317e7db (MD5)Made available in DSpace on 2022-07-11T17:05:28Z (GMT). No. of bitstreams: 1 PRISCILALIMAROCHA.pdf: 6661794 bytes, checksum: a15d04794ce3ffe8c4b8c47dc317e7db (MD5) Previous issue date: 2022-05-31application/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETHipsarritmia;Síndrome Congênita do Zika vírus;Síndrome de West;Momentos Conjuntos Tempo-FrequênciaEntropiaAprendizado de Máquinas.Hypsarrhythmia;Zika virus congenital syndrome;West Syndrome;Join MomentsEntropy;Machine Learning.Ciência da ComputaçãoCiências Exatas e da TerraCaracterização das Hipsarritmias secundárias à Síndrome Congênita do Zika vírus e à Síndrome de West baseada em Momentos Conjuntos e Medidas de EntropiaCharacterization of Hypsarrhythmias secondary to Congenital Syndrome of Zika and West Syndrome based on Joint Moments and Entropy Measuresinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALPRISCILALIMAROCHA.pdfPRISCILALIMAROCHA.pdfapplication/pdf6661794http://tedebc.ufma.br:8080/bitstream/tede/3840/2/PRISCILALIMAROCHA.pdfa15d04794ce3ffe8c4b8c47dc317e7dbMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/3840/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/38402023-05-17 13:53:50.344oai:tede2:tede/3840IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312023-05-17T16:53:50Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Caracterização das Hipsarritmias secundárias à Síndrome Congênita do Zika vírus e à Síndrome de West baseada em Momentos Conjuntos e Medidas de Entropia
dc.title.alternative.eng.fl_str_mv Characterization of Hypsarrhythmias secondary to Congenital Syndrome of Zika and West Syndrome based on Joint Moments and Entropy Measures
title Caracterização das Hipsarritmias secundárias à Síndrome Congênita do Zika vírus e à Síndrome de West baseada em Momentos Conjuntos e Medidas de Entropia
spellingShingle Caracterização das Hipsarritmias secundárias à Síndrome Congênita do Zika vírus e à Síndrome de West baseada em Momentos Conjuntos e Medidas de Entropia
ROCHA, Priscila Lima
Hipsarritmia;
Síndrome Congênita do Zika vírus;
Síndrome de West;
Momentos Conjuntos Tempo-Frequência
Entropia
Aprendizado de Máquinas.
Hypsarrhythmia;
Zika virus congenital syndrome;
West Syndrome;
Join Moments
Entropy;
Machine Learning.
Ciência da Computação
Ciências Exatas e da Terra
title_short Caracterização das Hipsarritmias secundárias à Síndrome Congênita do Zika vírus e à Síndrome de West baseada em Momentos Conjuntos e Medidas de Entropia
title_full Caracterização das Hipsarritmias secundárias à Síndrome Congênita do Zika vírus e à Síndrome de West baseada em Momentos Conjuntos e Medidas de Entropia
title_fullStr Caracterização das Hipsarritmias secundárias à Síndrome Congênita do Zika vírus e à Síndrome de West baseada em Momentos Conjuntos e Medidas de Entropia
title_full_unstemmed Caracterização das Hipsarritmias secundárias à Síndrome Congênita do Zika vírus e à Síndrome de West baseada em Momentos Conjuntos e Medidas de Entropia
title_sort Caracterização das Hipsarritmias secundárias à Síndrome Congênita do Zika vírus e à Síndrome de West baseada em Momentos Conjuntos e Medidas de Entropia
author ROCHA, Priscila Lima
author_facet ROCHA, Priscila Lima
author_role author
dc.contributor.advisor1.fl_str_mv BARROS FILHO, Allan Kardec Duailibe
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0492330410079141
dc.contributor.advisor-co1.fl_str_mv SILVA, Washington Luis Santos
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/2097264664222196
dc.contributor.referee1.fl_str_mv BARROS FILHO, Allan Kardec Duailibe
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/0492330410079141
dc.contributor.referee2.fl_str_mv SILVA, Washington Luís Santos
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2097264664222196
dc.contributor.referee3.fl_str_mv PIRES, Danubia Soares
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4739495583287970
dc.contributor.referee4.fl_str_mv BARREIROS, Marta de Oliveira
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/2695239794047991
dc.contributor.referee5.fl_str_mv SANTANA, Ewaldo Eder Carvalho
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/0660692009750374
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0210192910474011
dc.contributor.author.fl_str_mv ROCHA, Priscila Lima
contributor_str_mv BARROS FILHO, Allan Kardec Duailibe
SILVA, Washington Luis Santos
BARROS FILHO, Allan Kardec Duailibe
SILVA, Washington Luís Santos
PIRES, Danubia Soares
BARREIROS, Marta de Oliveira
SANTANA, Ewaldo Eder Carvalho
dc.subject.por.fl_str_mv Hipsarritmia;
Síndrome Congênita do Zika vírus;
Síndrome de West;
Momentos Conjuntos Tempo-Frequência
Entropia
Aprendizado de Máquinas.
topic Hipsarritmia;
Síndrome Congênita do Zika vírus;
Síndrome de West;
Momentos Conjuntos Tempo-Frequência
Entropia
Aprendizado de Máquinas.
Hypsarrhythmia;
Zika virus congenital syndrome;
West Syndrome;
Join Moments
Entropy;
Machine Learning.
Ciência da Computação
Ciências Exatas e da Terra
dc.subject.eng.fl_str_mv Hypsarrhythmia;
Zika virus congenital syndrome;
West Syndrome;
Join Moments
Entropy;
Machine Learning.
dc.subject.cnpq.fl_str_mv Ciência da Computação
Ciências Exatas e da Terra
description West Syndrome is a rare and severe form of childhood epilepsy characterized by triad: presence of spasms, cognitive developmental delay and the hipsarrhythmia pattern on electroencephalogram (EEG). Hipsarrhythmia is a specific chaotic morphology present in the interictal period of the EEG signal, studied and known by neurologists since 1841, through the description of West Syndrome (WS) and which has recently also been identified in the examinations of patients with Zika virus congenital syndrome (ZVCS). The hipsarrhythmia characterization in infants with microcephaly due Zika virus is still very superficial. Then, the question arises whether there is a difference between the hysarrhythmic pattern that occurs in those born with CZVS of those from WS. Since the emergence of ZVCS cases, many questions about the characterization of this disease are still open, among them, whether the hypsarrhythmia in ZVCS follows the same electroencephalographic pattern as the hypsarrhythmia in WS. In view of this, this work proposes the development of a computational methodology for analysis and differentiation, based on the time-frequency domain, between the chaotic hipsarrhythmia pattern found in EEG signals of patients with microcephaly caused by Zika virus and also found in patients diagnosed with West Syndrome. Analysis in the time-frequency domain is performed from the Wavelet Continuous Transform (CWT) which reveals the energy distribution of the EEG signal at different frequency scales over time. Three mother-wavelet functions are tested to determine the most appropriate function to represent EEG signals with hipsarrhythmia ZVCS and hipsarrhythmia WS. Considering the energy distribution profiles generated by CWT, four joint moments are obtained - joint mean - μ(t,f) , joint variance - σ 2 (t,f) , join skewness - λ(t,f) , and join kurtosis - κ(t,f) - and four entropy measures - Shannon, Log Energy, Norm, and Sure - to compose the attributes vector that representing the hypsarrhythmic signals under analysis. The performance of five classical types of machine learning algorithms are verified in classification using the k-fold cross validation and leave-one-patient-out cross validation methods. Discrimination results provided 78,08% accuracy, 85,55% sensitivity, 73,21% specificity, and AUC = 0,89 for the ANN classifier.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-07-11T17:05:28Z
dc.date.issued.fl_str_mv 2022-05-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ROCHA, Priscila Lima. Caracterização das Hipsarritmias secundárias à Síndrome Congênita do Zika vírus e à Síndrome de West baseada em Momentos Conjuntos e Medidas de Entropia. 2022. 129 f. Tese (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2022.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/3840
identifier_str_mv ROCHA, Priscila Lima. Caracterização das Hipsarritmias secundárias à Síndrome Congênita do Zika vírus e à Síndrome de West baseada em Momentos Conjuntos e Medidas de Entropia. 2022. 129 f. Tese (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2022.
url https://tedebc.ufma.br/jspui/handle/tede/tede/3840
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/3840/2/PRISCILALIMAROCHA.pdf
http://tedebc.ufma.br:8080/bitstream/tede/3840/1/license.txt
bitstream.checksum.fl_str_mv a15d04794ce3ffe8c4b8c47dc317e7db
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926203897806848