Detecção e classificação de derramamento de óleo na superfície oceânica baseada em aprendizagem profunda via algoritmo YOLO

Detalhes bibliográficos
Autor(a) principal: SILVA, Tayná Cristina Sousa
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/5221
Resumo: Due to global growth, the importance of the world economy in relation to the use of petroleum-based raw materials has increased. As a result of this growth, the importance of issues related to socio-environmental and economic concerns has been highlighted in the scientific field. Consequently, the occurrence of oil spill incidents on the ocean surface requires the development of methodologies to mitigate the impact caused by the problem in the affected areas. With the availability of satellites equipped with Synthetic Aperture Radar, it is possible to monitor, detect and classify spills of oil and its derivatives at sea. This dissertation presents a proposal for a methodology based on deep learning, specifically using the YOLO family of algorithms. Therefore, according to the experiments carried out using the dataset obtained via radar and provided by the SENTINEL-1 mission, during the tests in the validation phase for YOLOv8 nano, small and medium, better performance was observed for medium, with accuracy metrics, mAP-50 and mAP50-90 equivalent to 0.891%, 0.85% and 0.716%, respectively. The result in the test phase reached a confidence level, according to the IoU (Intersection over Union) metric, of more than 70% of the objects classified as oil slicks.
id UFMA_c205c0fedbcfa70ab96d0a35074ac8dd
oai_identifier_str oai:tede2:tede/5221
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling FONSECA NETO, João Viana dahttp://lattes.cnpq.br/0029055473709795FONSECA NETO, João Viana dahttp://lattes.cnpq.br/0029055473709795BARROS FILHO, Allan Kardec Duailibehttp://lattes.cnpq.br/0492330410079141OLIVEIRA, Roberto Célio Limão dehttp://lattes.cnpq.br/4497607460894318http://lattes.cnpq.br/3075861427486915SILVA, Tayná Cristina Sousa2024-04-08T16:31:54Z2024-03-04SILVA, Tayná Cristina Sousa. Detecção e classificação de derramamento de óleo na superfície oceânica baseada em aprendizagem profunda via algoritmo YOLO. 2024. 75 f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2024.https://tedebc.ufma.br/jspui/handle/tede/tede/5221Due to global growth, the importance of the world economy in relation to the use of petroleum-based raw materials has increased. As a result of this growth, the importance of issues related to socio-environmental and economic concerns has been highlighted in the scientific field. Consequently, the occurrence of oil spill incidents on the ocean surface requires the development of methodologies to mitigate the impact caused by the problem in the affected areas. With the availability of satellites equipped with Synthetic Aperture Radar, it is possible to monitor, detect and classify spills of oil and its derivatives at sea. This dissertation presents a proposal for a methodology based on deep learning, specifically using the YOLO family of algorithms. Therefore, according to the experiments carried out using the dataset obtained via radar and provided by the SENTINEL-1 mission, during the tests in the validation phase for YOLOv8 nano, small and medium, better performance was observed for medium, with accuracy metrics, mAP-50 and mAP50-90 equivalent to 0.891%, 0.85% and 0.716%, respectively. The result in the test phase reached a confidence level, according to the IoU (Intersection over Union) metric, of more than 70% of the objects classified as oil slicks.Devido ao crescimento global, a importância da economia mundial relacionado ao uso de matérias primas advindas do petróleo vem aumentando cada vez mais. Em decorrência a esse crescimento, a importância de temas relacionados com a preocupação socioambiental e econômico vem se destacando no âmbito científico. Consequentemente, a ocorrência de incidentes de derrames de óleos em superfície oceânica demanda o desenvolvimento de metodologias para mitigar os impactos causados pela problemática nas áreas atingidas. Com a disponibilidade de satélites equipados com Radar de Abertura Sintética, é viável monitorar, detectar e classificar os derramamentos de petróleo e seus derivados no mar. Neste trabalho é apresentada uma proposta de metodologia baseada em aprendizagem profunda, especificamente por meio da família do algoritmo YOLO. Portanto, de acordo com os experimentos realizados através da base de dados obtida via radar e disponibilizada pela missão SENTINEL-1, durante os testes na fase de validação para a YOLOv8 nano, small e medium, observou-se um melhor desempenho para o medium, com métricas de precisão, mAP-50 e mAP50-90 são equivalentes à 0.891%, 0.85% e 0.716%, respectivamente. Já o resultado na fase de teste atingiu um nível de confiança, de acordo com a métrica IoU (Intersection over Union) acima de 70% dos objetos classificados como manchas de óleos.Submitted by Jonathan Sousa de Almeida (jonathan.sousa@ufma.br) on 2024-04-08T16:31:54Z No. of bitstreams: 1 TAYNÁCRISTINASOUSASILVA.pdf: 3357945 bytes, checksum: e620eb37df7ceddebc8a9138917bd18f (MD5)Made available in DSpace on 2024-04-08T16:31:54Z (GMT). No. of bitstreams: 1 TAYNÁCRISTINASOUSASILVA.pdf: 3357945 bytes, checksum: e620eb37df7ceddebc8a9138917bd18f (MD5) Previous issue date: 2024-03-04Programa de Recursos Humanos (PRH 54.1) - ANPapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETderramamento de óleo;aprendizagem profunda;algoritmo YOLO;detecção;classificação.oil spill;deep learning;YOLO algorithm;detection;classification.Ciências Exatas e da TerraDetecção e classificação de derramamento de óleo na superfície oceânica baseada em aprendizagem profunda via algoritmo YOLODetection and classification of oil spills on the ocean surface based on deep learning via the YOLO algorithminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALTAYNÁCRISTINASOUSASILVA.pdfTAYNÁCRISTINASOUSASILVA.pdfapplication/pdf3357945http://tedebc.ufma.br:8080/bitstream/tede/5221/2/TAYN%C3%81CRISTINASOUSASILVA.pdfe620eb37df7ceddebc8a9138917bd18fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/5221/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/52212024-04-08 13:31:54.456oai:tede2:tede/5221IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312024-04-08T16:31:54Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Detecção e classificação de derramamento de óleo na superfície oceânica baseada em aprendizagem profunda via algoritmo YOLO
dc.title.alternative.eng.fl_str_mv Detection and classification of oil spills on the ocean surface based on deep learning via the YOLO algorithm
title Detecção e classificação de derramamento de óleo na superfície oceânica baseada em aprendizagem profunda via algoritmo YOLO
spellingShingle Detecção e classificação de derramamento de óleo na superfície oceânica baseada em aprendizagem profunda via algoritmo YOLO
SILVA, Tayná Cristina Sousa
derramamento de óleo;
aprendizagem profunda;
algoritmo YOLO;
detecção;
classificação.
oil spill;
deep learning;
YOLO algorithm;
detection;
classification.
Ciências Exatas e da Terra
title_short Detecção e classificação de derramamento de óleo na superfície oceânica baseada em aprendizagem profunda via algoritmo YOLO
title_full Detecção e classificação de derramamento de óleo na superfície oceânica baseada em aprendizagem profunda via algoritmo YOLO
title_fullStr Detecção e classificação de derramamento de óleo na superfície oceânica baseada em aprendizagem profunda via algoritmo YOLO
title_full_unstemmed Detecção e classificação de derramamento de óleo na superfície oceânica baseada em aprendizagem profunda via algoritmo YOLO
title_sort Detecção e classificação de derramamento de óleo na superfície oceânica baseada em aprendizagem profunda via algoritmo YOLO
author SILVA, Tayná Cristina Sousa
author_facet SILVA, Tayná Cristina Sousa
author_role author
dc.contributor.advisor1.fl_str_mv FONSECA NETO, João Viana da
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0029055473709795
dc.contributor.referee1.fl_str_mv FONSECA NETO, João Viana da
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/0029055473709795
dc.contributor.referee2.fl_str_mv BARROS FILHO, Allan Kardec Duailibe
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/0492330410079141
dc.contributor.referee3.fl_str_mv OLIVEIRA, Roberto Célio Limão de
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4497607460894318
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3075861427486915
dc.contributor.author.fl_str_mv SILVA, Tayná Cristina Sousa
contributor_str_mv FONSECA NETO, João Viana da
FONSECA NETO, João Viana da
BARROS FILHO, Allan Kardec Duailibe
OLIVEIRA, Roberto Célio Limão de
dc.subject.por.fl_str_mv derramamento de óleo;
aprendizagem profunda;
algoritmo YOLO;
detecção;
classificação.
topic derramamento de óleo;
aprendizagem profunda;
algoritmo YOLO;
detecção;
classificação.
oil spill;
deep learning;
YOLO algorithm;
detection;
classification.
Ciências Exatas e da Terra
dc.subject.eng.fl_str_mv oil spill;
deep learning;
YOLO algorithm;
detection;
classification.
dc.subject.cnpq.fl_str_mv Ciências Exatas e da Terra
description Due to global growth, the importance of the world economy in relation to the use of petroleum-based raw materials has increased. As a result of this growth, the importance of issues related to socio-environmental and economic concerns has been highlighted in the scientific field. Consequently, the occurrence of oil spill incidents on the ocean surface requires the development of methodologies to mitigate the impact caused by the problem in the affected areas. With the availability of satellites equipped with Synthetic Aperture Radar, it is possible to monitor, detect and classify spills of oil and its derivatives at sea. This dissertation presents a proposal for a methodology based on deep learning, specifically using the YOLO family of algorithms. Therefore, according to the experiments carried out using the dataset obtained via radar and provided by the SENTINEL-1 mission, during the tests in the validation phase for YOLOv8 nano, small and medium, better performance was observed for medium, with accuracy metrics, mAP-50 and mAP50-90 equivalent to 0.891%, 0.85% and 0.716%, respectively. The result in the test phase reached a confidence level, according to the IoU (Intersection over Union) metric, of more than 70% of the objects classified as oil slicks.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-04-08T16:31:54Z
dc.date.issued.fl_str_mv 2024-03-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, Tayná Cristina Sousa. Detecção e classificação de derramamento de óleo na superfície oceânica baseada em aprendizagem profunda via algoritmo YOLO. 2024. 75 f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2024.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/5221
identifier_str_mv SILVA, Tayná Cristina Sousa. Detecção e classificação de derramamento de óleo na superfície oceânica baseada em aprendizagem profunda via algoritmo YOLO. 2024. 75 f. Dissertação (Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2024.
url https://tedebc.ufma.br/jspui/handle/tede/tede/5221
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/5221/2/TAYN%C3%81CRISTINASOUSASILVA.pdf
http://tedebc.ufma.br:8080/bitstream/tede/5221/1/license.txt
bitstream.checksum.fl_str_mv e620eb37df7ceddebc8a9138917bd18f
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926219819384832