Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFMA |
Texto Completo: | https://tedebc.ufma.br/jspui/handle/tede/tede/2621 |
Resumo: | In the last two decades several developing countries have undergone an accelerated nutritional and epidemiological transition, causing an increase in the prevalence of excess body fat in adolescence in these countries, including Brazil. The high prevalence of overweight in this phase is associated with the early development of several diseases including metabolic and cardiovascular disorders, therefore, low cost screening methods are essential for the screening of excess general adiposity in this age group. Thus, the present study aims to classify excess body fat in schoolchildren using machine learning methods. Thereunto, three methods of classification were tested: k-nearest neighbors, support vector machine and decision tree. This is a cross-sectional study, where the database used for the training and test stages was collected in schools of the public system of São Luís / Maranhão, in the year 2018, consisting of 602 adolescents, of both genders, with age from 10 to 19 years. For external validation of the algorithm, another database of 320 adolescents, also from the school population, was used. A priori, the following indicators were evaluated: body mass, height, age, gender, waist circumference, hip, neck, calf and arm, heart rate, body fat percentage, body mass index and waist height ratio. For the application of the classifier algorithm and software development, the MATLAB® program was used, and the SPSS® software was used in the statistical analysis. The following statistical tests were applied: Kolmogorov-Smirnov, Student's T, ANOVA One Way, Mann-Whitney U and Kruskal-Wallis H. The classifier used in the construction of the software was the nearest k-neighbors that obtained accuracy of 78%, sensitivity 92% and specificity 54%, using the following entries: body mass, height, age, gender and waist circumference. When compared to body mass index and waist height ratio, the k-nearest neighbors achieved better performance (sensitivity 95%) in the screening of adolescents with high body fat percentage. Thus, the k-nearest neighbors algorithm can be used as a screening method with high sensitivity and low cost in the evaluation of general adiposity in adolescents from São Luís/MA. |
id |
UFMA_c2e85eab5d79521cc9bffed70ef039a2 |
---|---|
oai_identifier_str |
oai:tede2:tede/2621 |
network_acronym_str |
UFMA |
network_name_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
repository_id_str |
2131 |
spelling |
BARROS FILHO, Allan Kardec Duailibe023515263-33http://lattes.cnpq.br/7098173750289255BARROS FILHO, Allan Kardec Duailibe023515263-33http://lattes.cnpq.br/7098173750289255NASCIMENTO, Maria do Desterro Soares Brandãohttp://lattes.cnpq.br/3958174822396319CARMO, Luiza Helena Araújo dohttp://lattes.cnpq.br/7789267361757502SANTOS NETO , Marcelinohttp://lattes.cnpq.br/2762193275718620GONÇALVES NETO , Lídiohttp://lattes.cnpq.br/1932060521693591023515263.33http://lattes.cnpq.br/7098173750289255SOUSA, Nilviane Pires Silva2019-04-25T14:05:25Z2018-10-19SOUSA, Nilviane Pires Silva. Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina. 2018. Tese (Programa de Pós-Graduação em Biotecnologia - RENORBIO/CCBS) - Universidade Federal do Maranhão, São Luís.https://tedebc.ufma.br/jspui/handle/tede/tede/2621In the last two decades several developing countries have undergone an accelerated nutritional and epidemiological transition, causing an increase in the prevalence of excess body fat in adolescence in these countries, including Brazil. The high prevalence of overweight in this phase is associated with the early development of several diseases including metabolic and cardiovascular disorders, therefore, low cost screening methods are essential for the screening of excess general adiposity in this age group. Thus, the present study aims to classify excess body fat in schoolchildren using machine learning methods. Thereunto, three methods of classification were tested: k-nearest neighbors, support vector machine and decision tree. This is a cross-sectional study, where the database used for the training and test stages was collected in schools of the public system of São Luís / Maranhão, in the year 2018, consisting of 602 adolescents, of both genders, with age from 10 to 19 years. For external validation of the algorithm, another database of 320 adolescents, also from the school population, was used. A priori, the following indicators were evaluated: body mass, height, age, gender, waist circumference, hip, neck, calf and arm, heart rate, body fat percentage, body mass index and waist height ratio. For the application of the classifier algorithm and software development, the MATLAB® program was used, and the SPSS® software was used in the statistical analysis. The following statistical tests were applied: Kolmogorov-Smirnov, Student's T, ANOVA One Way, Mann-Whitney U and Kruskal-Wallis H. The classifier used in the construction of the software was the nearest k-neighbors that obtained accuracy of 78%, sensitivity 92% and specificity 54%, using the following entries: body mass, height, age, gender and waist circumference. When compared to body mass index and waist height ratio, the k-nearest neighbors achieved better performance (sensitivity 95%) in the screening of adolescents with high body fat percentage. Thus, the k-nearest neighbors algorithm can be used as a screening method with high sensitivity and low cost in the evaluation of general adiposity in adolescents from São Luís/MA.Vários países em desenvolvimento sofreram, nas últimas duas décadas, uma acelerada transição nutricional e epidemiológica, ocasionando um aumento na prevalência de excesso de gordura corporal na adolescência nesses países, incluindo o Brasil. A prevalência elevada de excesso de peso nessa fase está associada ao desenvolvimento precoce de diversas doenças incluindo distúrbios metabólicos e cardiovasculares, desta forma métodos de triagem de baixo custo são essenciais para o rastreamento do excesso de adiposidade geral nesta faixa etária. Assim, o presente estudo tem por objetivo classificar o excesso de gordura corporal em escolares através de métodos de aprendizado de máquina. Para tanto foram testados três métodos de classificação: k-vizinhos mais próximos, máquina de vetores de suporte e árvore de decisão. Trata-se de um estudo transversal, onde a base de dados utilizada para as etapas de treinamento e teste foi coletada em escolas da rede pública de ensino de São Luís/MA, no ano de 2018, sendo constituída de 602 adolescentes, de ambos os gêneros, com idade de 10 a 19 anos. Para validação externa do algoritmo foi utilizada outra base de dados formada por 320 adolescentes também advinda da população escolar. A priori, os seguintes indicadores foram avaliados: massa corporal, estatura, idade, gênero, circunferência da cintura, quadril, pescoço, panturrilha e braço, frequência cardíaca, percentual de gordura corporal, índice de massa corporal e relação cintura estatura. Para aplicação do algoritmo classificador e desenvolvimento do software foi utilizado o programa MATLAB®. E na análise estatística foi utilizado o software SPSS®, sendo aplicados os seguintes testes estatísticos: Kolmogorov- Smirnov, t de student, ANOVA One Way, Mann-Whitney U e Kruskal-Wallis H. O classificador utilizado na construção do software foi o k-vizinhos mais próximos que obteve acurácia de 78%, sensibilidade 92% e especificidade 54%, utilizando as seguintes entradas: massa corporal, estatura, idade, gênero e circunferência da cintura. Quando comparado ao índice de massa corporal e relação cintura estatura o k-vizinhos mais próximos conseguiu melhor desempenho (sensibilidade 95%) na triagem de adolescentes com percentual de gordura corporal elevado. Desta forma, o algoritmo k-vizinhos mais próximo pode ser utilizado como método de triagem com alta sensibilidade e baixo custo na avaliação da adiposidade geral em adolescentes de São Luís/MA.Submitted by Daniella Santos (daniella.santos@ufma.br) on 2019-04-25T14:05:25Z No. of bitstreams: 1 NILVIANEPIRESSILVASOUSA.pdf: 187616 bytes, checksum: 43eb7f698458788bc2b580a5d2b02c78 (MD5)Made available in DSpace on 2019-04-25T14:05:25Z (GMT). No. of bitstreams: 1 NILVIANEPIRESSILVASOUSA.pdf: 187616 bytes, checksum: 43eb7f698458788bc2b580a5d2b02c78 (MD5) Previous issue date: 2018-10-19FAPE,MAapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA - RENORBIO/CCBSUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETComposição corporalAprendizado de máquinaProgramas de rastreamentoSensibilidade e especificidadeBody compositionMachine learningMass screeningSensitivity and specificityNutriçãoTeoria da ComputaçãoRastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquinaTracking of excess body fat in adolescents through machine learning techniquesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMALICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/2621/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/26212019-04-25 11:06:24.388oai:tede2:tede/2621IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312019-04-25T14:06:24Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false |
dc.title.por.fl_str_mv |
Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina |
dc.title.alternative.eng.fl_str_mv |
Tracking of excess body fat in adolescents through machine learning techniques |
title |
Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina |
spellingShingle |
Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina SOUSA, Nilviane Pires Silva Composição corporal Aprendizado de máquina Programas de rastreamento Sensibilidade e especificidade Body composition Machine learning Mass screening Sensitivity and specificity Nutrição Teoria da Computação |
title_short |
Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina |
title_full |
Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina |
title_fullStr |
Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina |
title_full_unstemmed |
Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina |
title_sort |
Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina |
author |
SOUSA, Nilviane Pires Silva |
author_facet |
SOUSA, Nilviane Pires Silva |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
BARROS FILHO, Allan Kardec Duailibe |
dc.contributor.advisor1ID.fl_str_mv |
023515263-33 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7098173750289255 |
dc.contributor.referee1.fl_str_mv |
BARROS FILHO, Allan Kardec Duailibe |
dc.contributor.referee1ID.fl_str_mv |
023515263-33 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/7098173750289255 |
dc.contributor.referee2.fl_str_mv |
NASCIMENTO, Maria do Desterro Soares Brandão |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/3958174822396319 |
dc.contributor.referee3.fl_str_mv |
CARMO, Luiza Helena Araújo do |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/7789267361757502 |
dc.contributor.referee4.fl_str_mv |
SANTOS NETO , Marcelino |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/2762193275718620 |
dc.contributor.referee5.fl_str_mv |
GONÇALVES NETO , Lídio |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/1932060521693591 |
dc.contributor.authorID.fl_str_mv |
023515263.33 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/7098173750289255 |
dc.contributor.author.fl_str_mv |
SOUSA, Nilviane Pires Silva |
contributor_str_mv |
BARROS FILHO, Allan Kardec Duailibe BARROS FILHO, Allan Kardec Duailibe NASCIMENTO, Maria do Desterro Soares Brandão CARMO, Luiza Helena Araújo do SANTOS NETO , Marcelino GONÇALVES NETO , Lídio |
dc.subject.por.fl_str_mv |
Composição corporal Aprendizado de máquina Programas de rastreamento Sensibilidade e especificidade |
topic |
Composição corporal Aprendizado de máquina Programas de rastreamento Sensibilidade e especificidade Body composition Machine learning Mass screening Sensitivity and specificity Nutrição Teoria da Computação |
dc.subject.eng.fl_str_mv |
Body composition Machine learning Mass screening Sensitivity and specificity |
dc.subject.cnpq.fl_str_mv |
Nutrição Teoria da Computação |
description |
In the last two decades several developing countries have undergone an accelerated nutritional and epidemiological transition, causing an increase in the prevalence of excess body fat in adolescence in these countries, including Brazil. The high prevalence of overweight in this phase is associated with the early development of several diseases including metabolic and cardiovascular disorders, therefore, low cost screening methods are essential for the screening of excess general adiposity in this age group. Thus, the present study aims to classify excess body fat in schoolchildren using machine learning methods. Thereunto, three methods of classification were tested: k-nearest neighbors, support vector machine and decision tree. This is a cross-sectional study, where the database used for the training and test stages was collected in schools of the public system of São Luís / Maranhão, in the year 2018, consisting of 602 adolescents, of both genders, with age from 10 to 19 years. For external validation of the algorithm, another database of 320 adolescents, also from the school population, was used. A priori, the following indicators were evaluated: body mass, height, age, gender, waist circumference, hip, neck, calf and arm, heart rate, body fat percentage, body mass index and waist height ratio. For the application of the classifier algorithm and software development, the MATLAB® program was used, and the SPSS® software was used in the statistical analysis. The following statistical tests were applied: Kolmogorov-Smirnov, Student's T, ANOVA One Way, Mann-Whitney U and Kruskal-Wallis H. The classifier used in the construction of the software was the nearest k-neighbors that obtained accuracy of 78%, sensitivity 92% and specificity 54%, using the following entries: body mass, height, age, gender and waist circumference. When compared to body mass index and waist height ratio, the k-nearest neighbors achieved better performance (sensitivity 95%) in the screening of adolescents with high body fat percentage. Thus, the k-nearest neighbors algorithm can be used as a screening method with high sensitivity and low cost in the evaluation of general adiposity in adolescents from São Luís/MA. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-10-19 |
dc.date.accessioned.fl_str_mv |
2019-04-25T14:05:25Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SOUSA, Nilviane Pires Silva. Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina. 2018. Tese (Programa de Pós-Graduação em Biotecnologia - RENORBIO/CCBS) - Universidade Federal do Maranhão, São Luís. |
dc.identifier.uri.fl_str_mv |
https://tedebc.ufma.br/jspui/handle/tede/tede/2621 |
identifier_str_mv |
SOUSA, Nilviane Pires Silva. Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina. 2018. Tese (Programa de Pós-Graduação em Biotecnologia - RENORBIO/CCBS) - Universidade Federal do Maranhão, São Luís. |
url |
https://tedebc.ufma.br/jspui/handle/tede/tede/2621 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.publisher.program.fl_str_mv |
PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA - RENORBIO/CCBS |
dc.publisher.initials.fl_str_mv |
UFMA |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET |
publisher.none.fl_str_mv |
Universidade Federal do Maranhão |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFMA instname:Universidade Federal do Maranhão (UFMA) instacron:UFMA |
instname_str |
Universidade Federal do Maranhão (UFMA) |
instacron_str |
UFMA |
institution |
UFMA |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFMA |
collection |
Biblioteca Digital de Teses e Dissertações da UFMA |
bitstream.url.fl_str_mv |
http://tedebc.ufma.br:8080/bitstream/tede/2621/1/license.txt |
bitstream.checksum.fl_str_mv |
97eeade1fce43278e63fe063657f8083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA) |
repository.mail.fl_str_mv |
repositorio@ufma.br||repositorio@ufma.br |
_version_ |
1809926191784656896 |