Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina

Detalhes bibliográficos
Autor(a) principal: SOUSA, Nilviane Pires Silva
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/2621
Resumo: In the last two decades several developing countries have undergone an accelerated nutritional and epidemiological transition, causing an increase in the prevalence of excess body fat in adolescence in these countries, including Brazil. The high prevalence of overweight in this phase is associated with the early development of several diseases including metabolic and cardiovascular disorders, therefore, low cost screening methods are essential for the screening of excess general adiposity in this age group. Thus, the present study aims to classify excess body fat in schoolchildren using machine learning methods. Thereunto, three methods of classification were tested: k-nearest neighbors, support vector machine and decision tree. This is a cross-sectional study, where the database used for the training and test stages was collected in schools of the public system of São Luís / Maranhão, in the year 2018, consisting of 602 adolescents, of both genders, with age from 10 to 19 years. For external validation of the algorithm, another database of 320 adolescents, also from the school population, was used. A priori, the following indicators were evaluated: body mass, height, age, gender, waist circumference, hip, neck, calf and arm, heart rate, body fat percentage, body mass index and waist height ratio. For the application of the classifier algorithm and software development, the MATLAB® program was used, and the SPSS® software was used in the statistical analysis. The following statistical tests were applied: Kolmogorov-Smirnov, Student's T, ANOVA One Way, Mann-Whitney U and Kruskal-Wallis H. The classifier used in the construction of the software was the nearest k-neighbors that obtained accuracy of 78%, sensitivity 92% and specificity 54%, using the following entries: body mass, height, age, gender and waist circumference. When compared to body mass index and waist height ratio, the k-nearest neighbors achieved better performance (sensitivity 95%) in the screening of adolescents with high body fat percentage. Thus, the k-nearest neighbors algorithm can be used as a screening method with high sensitivity and low cost in the evaluation of general adiposity in adolescents from São Luís/MA.
id UFMA_c2e85eab5d79521cc9bffed70ef039a2
oai_identifier_str oai:tede2:tede/2621
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling BARROS FILHO, Allan Kardec Duailibe023515263-33http://lattes.cnpq.br/7098173750289255BARROS FILHO, Allan Kardec Duailibe023515263-33http://lattes.cnpq.br/7098173750289255NASCIMENTO, Maria do Desterro Soares Brandãohttp://lattes.cnpq.br/3958174822396319CARMO, Luiza Helena Araújo dohttp://lattes.cnpq.br/7789267361757502SANTOS NETO , Marcelinohttp://lattes.cnpq.br/2762193275718620GONÇALVES NETO , Lídiohttp://lattes.cnpq.br/1932060521693591023515263.33http://lattes.cnpq.br/7098173750289255SOUSA, Nilviane Pires Silva2019-04-25T14:05:25Z2018-10-19SOUSA, Nilviane Pires Silva. Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina. 2018. Tese (Programa de Pós-Graduação em Biotecnologia - RENORBIO/CCBS) - Universidade Federal do Maranhão, São Luís.https://tedebc.ufma.br/jspui/handle/tede/tede/2621In the last two decades several developing countries have undergone an accelerated nutritional and epidemiological transition, causing an increase in the prevalence of excess body fat in adolescence in these countries, including Brazil. The high prevalence of overweight in this phase is associated with the early development of several diseases including metabolic and cardiovascular disorders, therefore, low cost screening methods are essential for the screening of excess general adiposity in this age group. Thus, the present study aims to classify excess body fat in schoolchildren using machine learning methods. Thereunto, three methods of classification were tested: k-nearest neighbors, support vector machine and decision tree. This is a cross-sectional study, where the database used for the training and test stages was collected in schools of the public system of São Luís / Maranhão, in the year 2018, consisting of 602 adolescents, of both genders, with age from 10 to 19 years. For external validation of the algorithm, another database of 320 adolescents, also from the school population, was used. A priori, the following indicators were evaluated: body mass, height, age, gender, waist circumference, hip, neck, calf and arm, heart rate, body fat percentage, body mass index and waist height ratio. For the application of the classifier algorithm and software development, the MATLAB® program was used, and the SPSS® software was used in the statistical analysis. The following statistical tests were applied: Kolmogorov-Smirnov, Student's T, ANOVA One Way, Mann-Whitney U and Kruskal-Wallis H. The classifier used in the construction of the software was the nearest k-neighbors that obtained accuracy of 78%, sensitivity 92% and specificity 54%, using the following entries: body mass, height, age, gender and waist circumference. When compared to body mass index and waist height ratio, the k-nearest neighbors achieved better performance (sensitivity 95%) in the screening of adolescents with high body fat percentage. Thus, the k-nearest neighbors algorithm can be used as a screening method with high sensitivity and low cost in the evaluation of general adiposity in adolescents from São Luís/MA.Vários países em desenvolvimento sofreram, nas últimas duas décadas, uma acelerada transição nutricional e epidemiológica, ocasionando um aumento na prevalência de excesso de gordura corporal na adolescência nesses países, incluindo o Brasil. A prevalência elevada de excesso de peso nessa fase está associada ao desenvolvimento precoce de diversas doenças incluindo distúrbios metabólicos e cardiovasculares, desta forma métodos de triagem de baixo custo são essenciais para o rastreamento do excesso de adiposidade geral nesta faixa etária. Assim, o presente estudo tem por objetivo classificar o excesso de gordura corporal em escolares através de métodos de aprendizado de máquina. Para tanto foram testados três métodos de classificação: k-vizinhos mais próximos, máquina de vetores de suporte e árvore de decisão. Trata-se de um estudo transversal, onde a base de dados utilizada para as etapas de treinamento e teste foi coletada em escolas da rede pública de ensino de São Luís/MA, no ano de 2018, sendo constituída de 602 adolescentes, de ambos os gêneros, com idade de 10 a 19 anos. Para validação externa do algoritmo foi utilizada outra base de dados formada por 320 adolescentes também advinda da população escolar. A priori, os seguintes indicadores foram avaliados: massa corporal, estatura, idade, gênero, circunferência da cintura, quadril, pescoço, panturrilha e braço, frequência cardíaca, percentual de gordura corporal, índice de massa corporal e relação cintura estatura. Para aplicação do algoritmo classificador e desenvolvimento do software foi utilizado o programa MATLAB®. E na análise estatística foi utilizado o software SPSS®, sendo aplicados os seguintes testes estatísticos: Kolmogorov- Smirnov, t de student, ANOVA One Way, Mann-Whitney U e Kruskal-Wallis H. O classificador utilizado na construção do software foi o k-vizinhos mais próximos que obteve acurácia de 78%, sensibilidade 92% e especificidade 54%, utilizando as seguintes entradas: massa corporal, estatura, idade, gênero e circunferência da cintura. Quando comparado ao índice de massa corporal e relação cintura estatura o k-vizinhos mais próximos conseguiu melhor desempenho (sensibilidade 95%) na triagem de adolescentes com percentual de gordura corporal elevado. Desta forma, o algoritmo k-vizinhos mais próximo pode ser utilizado como método de triagem com alta sensibilidade e baixo custo na avaliação da adiposidade geral em adolescentes de São Luís/MA.Submitted by Daniella Santos (daniella.santos@ufma.br) on 2019-04-25T14:05:25Z No. of bitstreams: 1 NILVIANEPIRESSILVASOUSA.pdf: 187616 bytes, checksum: 43eb7f698458788bc2b580a5d2b02c78 (MD5)Made available in DSpace on 2019-04-25T14:05:25Z (GMT). No. of bitstreams: 1 NILVIANEPIRESSILVASOUSA.pdf: 187616 bytes, checksum: 43eb7f698458788bc2b580a5d2b02c78 (MD5) Previous issue date: 2018-10-19FAPE,MAapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA - RENORBIO/CCBSUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETComposição corporalAprendizado de máquinaProgramas de rastreamentoSensibilidade e especificidadeBody compositionMachine learningMass screeningSensitivity and specificityNutriçãoTeoria da ComputaçãoRastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquinaTracking of excess body fat in adolescents through machine learning techniquesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMALICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/2621/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/26212019-04-25 11:06:24.388oai:tede2:tede/2621IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312019-04-25T14:06:24Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina
dc.title.alternative.eng.fl_str_mv Tracking of excess body fat in adolescents through machine learning techniques
title Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina
spellingShingle Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina
SOUSA, Nilviane Pires Silva
Composição corporal
Aprendizado de máquina
Programas de rastreamento
Sensibilidade e especificidade
Body composition
Machine learning
Mass screening
Sensitivity and specificity
Nutrição
Teoria da Computação
title_short Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina
title_full Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina
title_fullStr Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina
title_full_unstemmed Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina
title_sort Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina
author SOUSA, Nilviane Pires Silva
author_facet SOUSA, Nilviane Pires Silva
author_role author
dc.contributor.advisor1.fl_str_mv BARROS FILHO, Allan Kardec Duailibe
dc.contributor.advisor1ID.fl_str_mv 023515263-33
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7098173750289255
dc.contributor.referee1.fl_str_mv BARROS FILHO, Allan Kardec Duailibe
dc.contributor.referee1ID.fl_str_mv 023515263-33
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/7098173750289255
dc.contributor.referee2.fl_str_mv NASCIMENTO, Maria do Desterro Soares Brandão
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3958174822396319
dc.contributor.referee3.fl_str_mv CARMO, Luiza Helena Araújo do
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/7789267361757502
dc.contributor.referee4.fl_str_mv SANTOS NETO , Marcelino
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/2762193275718620
dc.contributor.referee5.fl_str_mv GONÇALVES NETO , Lídio
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/1932060521693591
dc.contributor.authorID.fl_str_mv 023515263.33
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7098173750289255
dc.contributor.author.fl_str_mv SOUSA, Nilviane Pires Silva
contributor_str_mv BARROS FILHO, Allan Kardec Duailibe
BARROS FILHO, Allan Kardec Duailibe
NASCIMENTO, Maria do Desterro Soares Brandão
CARMO, Luiza Helena Araújo do
SANTOS NETO , Marcelino
GONÇALVES NETO , Lídio
dc.subject.por.fl_str_mv Composição corporal
Aprendizado de máquina
Programas de rastreamento
Sensibilidade e especificidade
topic Composição corporal
Aprendizado de máquina
Programas de rastreamento
Sensibilidade e especificidade
Body composition
Machine learning
Mass screening
Sensitivity and specificity
Nutrição
Teoria da Computação
dc.subject.eng.fl_str_mv Body composition
Machine learning
Mass screening
Sensitivity and specificity
dc.subject.cnpq.fl_str_mv Nutrição
Teoria da Computação
description In the last two decades several developing countries have undergone an accelerated nutritional and epidemiological transition, causing an increase in the prevalence of excess body fat in adolescence in these countries, including Brazil. The high prevalence of overweight in this phase is associated with the early development of several diseases including metabolic and cardiovascular disorders, therefore, low cost screening methods are essential for the screening of excess general adiposity in this age group. Thus, the present study aims to classify excess body fat in schoolchildren using machine learning methods. Thereunto, three methods of classification were tested: k-nearest neighbors, support vector machine and decision tree. This is a cross-sectional study, where the database used for the training and test stages was collected in schools of the public system of São Luís / Maranhão, in the year 2018, consisting of 602 adolescents, of both genders, with age from 10 to 19 years. For external validation of the algorithm, another database of 320 adolescents, also from the school population, was used. A priori, the following indicators were evaluated: body mass, height, age, gender, waist circumference, hip, neck, calf and arm, heart rate, body fat percentage, body mass index and waist height ratio. For the application of the classifier algorithm and software development, the MATLAB® program was used, and the SPSS® software was used in the statistical analysis. The following statistical tests were applied: Kolmogorov-Smirnov, Student's T, ANOVA One Way, Mann-Whitney U and Kruskal-Wallis H. The classifier used in the construction of the software was the nearest k-neighbors that obtained accuracy of 78%, sensitivity 92% and specificity 54%, using the following entries: body mass, height, age, gender and waist circumference. When compared to body mass index and waist height ratio, the k-nearest neighbors achieved better performance (sensitivity 95%) in the screening of adolescents with high body fat percentage. Thus, the k-nearest neighbors algorithm can be used as a screening method with high sensitivity and low cost in the evaluation of general adiposity in adolescents from São Luís/MA.
publishDate 2018
dc.date.issued.fl_str_mv 2018-10-19
dc.date.accessioned.fl_str_mv 2019-04-25T14:05:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUSA, Nilviane Pires Silva. Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina. 2018. Tese (Programa de Pós-Graduação em Biotecnologia - RENORBIO/CCBS) - Universidade Federal do Maranhão, São Luís.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/2621
identifier_str_mv SOUSA, Nilviane Pires Silva. Rastreamento do excesso de gordura corporal em adolescentes através de técnicas de aprendizado de máquina. 2018. Tese (Programa de Pós-Graduação em Biotecnologia - RENORBIO/CCBS) - Universidade Federal do Maranhão, São Luís.
url https://tedebc.ufma.br/jspui/handle/tede/tede/2621
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA - RENORBIO/CCBS
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/2621/1/license.txt
bitstream.checksum.fl_str_mv 97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926191784656896