Despacho econômico dinâmico sob incertezas com inclusão de fontes de energia renovável

Detalhes bibliográficos
Autor(a) principal: CANTANHEDE, André Carlos dos Santos
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFMA
Texto Completo: https://tedebc.ufma.br/jspui/handle/tede/tede/3481
Resumo: With the increase in renewable energy generation, several challenges arise for economic dispatch and changes in electricity markets. Dynamic economic dispatch is a complex optimization problem used to determine the generation schedule between the system's units, in a way that ensures the demand is met safely and reliably within a time horizon. The purpose of economic dispatch is to reduce marginal generation costs under restriction of operation, ramps and security of the units and the transmission system. With the addition of renewable energy sources and increasingly interconnected systems, economic dispatch problems have become increasingly complex. Thus, studies have analyzed new forms of optimization techniques for different forms of the problem, with the aim of improving the convergence point and computational time. This work aims to analyze the effects of the insertion of wind energy in dynamic economic dispatch. For this, the Quantum Particle Swarm Optimization (QPSO) meta heuristic was used and the cost of wind farms was calculated based on its analytical probabilistic production model. The proposed methodology was used in a system with 10 generators and a wind farm with meteorological data from Parnaíba-PI. For the study, different scenarios were analyzed in which the test system is linked to different wind farms, with generation concentrated in one bus and divided into two buses. In this study it is seen the influence of wind energy on the cost of operating the system. Furthermore, the uncertainty of wind energy generates costs linked to the forecast of expected generation of the wind farm combined with the reallocation of this load in the system. And finally the efficiency of the QPSO algorithm in the formulated DED problem.
id UFMA_d46a46bc7b1048bc3360bf60cd1c438c
oai_identifier_str oai:tede2:tede/3481
network_acronym_str UFMA
network_name_str Biblioteca Digital de Teses e Dissertações da UFMA
repository_id_str 2131
spelling PAUCAR CASAS, Vicente Leonardohttp://lattes.cnpq.br/1155686983267102COSTA FILHO, Raimundo Nonato Dinizhttp://lattes.cnpq.br/3573998478054699PAUCAR CASAS, Vicente Leonardohttp://lattes.cnpq.br/1155686983267102COSTA FILHO, Raimundo Nonato Dinizhttp://lattes.cnpq.br/3573998478054699BRANCO, Tadeu da Mata Medeiroshttp://lattes.cnpq.br/8911039344594817OLIVEIRA, Denisson Queirozhttp://lattes.cnpq.br/6282010489262947CANTANHEDE, André Carlos dos Santos2022-02-11T13:56:17Z2021-12-10CANTANHEDE, André Carlos dos Santos. Despacho econômico dinâmico sob incertezas com inclusão de fontes de energia renovável. 2021. 48 f. Dissertação( Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2021.https://tedebc.ufma.br/jspui/handle/tede/tede/3481With the increase in renewable energy generation, several challenges arise for economic dispatch and changes in electricity markets. Dynamic economic dispatch is a complex optimization problem used to determine the generation schedule between the system's units, in a way that ensures the demand is met safely and reliably within a time horizon. The purpose of economic dispatch is to reduce marginal generation costs under restriction of operation, ramps and security of the units and the transmission system. With the addition of renewable energy sources and increasingly interconnected systems, economic dispatch problems have become increasingly complex. Thus, studies have analyzed new forms of optimization techniques for different forms of the problem, with the aim of improving the convergence point and computational time. This work aims to analyze the effects of the insertion of wind energy in dynamic economic dispatch. For this, the Quantum Particle Swarm Optimization (QPSO) meta heuristic was used and the cost of wind farms was calculated based on its analytical probabilistic production model. The proposed methodology was used in a system with 10 generators and a wind farm with meteorological data from Parnaíba-PI. For the study, different scenarios were analyzed in which the test system is linked to different wind farms, with generation concentrated in one bus and divided into two buses. In this study it is seen the influence of wind energy on the cost of operating the system. Furthermore, the uncertainty of wind energy generates costs linked to the forecast of expected generation of the wind farm combined with the reallocation of this load in the system. And finally the efficiency of the QPSO algorithm in the formulated DED problem.Com o aumento de geração de energia renováveis, surgem diversos desafios para o despacho econômico e mudanças nos mercados de eletricidade. O despacho econômico dinâmico (DED) é um problema de otimização complexo usado para determinar o programa de geração entre as unidades do sistema, de forma que garanta o atendimento da demanda de maneira segura e confiável dentro de um horizonte de tempo. O despacho econômico tem como objetivo a diminuição dos custos marginais de geração sob restrição de operação, rampas e segurança das unidades e do sistema de transmissão. A adição de fontes de energia renováveis e sistemas interligados cada vez maior, os problemas de despacho econômico tem se tornado cada vez mais complexos. Assim, estudos têm analisado novas formas de técnicas de otimização para diferentes formas do problema, com o objetivo de melhorar o ponto de convergência e o tempo computacional. Este trabalho tem como objetivo analisar os efeitos da inserção da energia eólica no despacho econômico dinâmico. Para isso, foi empregada a meta-heurística Otimização por Enxames de Partículas Quânticas (QPSO) e calculado o custo de usinas eólicas baseado no seu modelo analítico probabilístico de produção. A metodologia proposta foi empregada em um sistema com 10 geradores e uma usina eólica com dados meteorológicos de Parnaíba-PI. Para o estudo foram analisados diferentes cenários no qual o sistema teste é atrelado a diferentes usinas eólicas, com geração concentrada em uma barra e dividida em duas barras. Nesse estudo percebe-se a influência da energia eólica no custo de operação do sistema. Além disso, a incerteza da energia eólica gera custos atrelados à previsão de geração esperada do parque eólico combinado à realocação dessa carga no sistema. E, finalmente, a eficiência do algoritmo QPSO no problema DED formulado.Submitted by Maria Aparecida (cidazen@gmail.com) on 2022-02-11T13:56:17Z No. of bitstreams: 1 Andre 2.pdf: 12591094 bytes, checksum: 9d60541940ab5c84b9756dacce0a79fb (MD5)Made available in DSpace on 2022-02-11T13:56:17Z (GMT). No. of bitstreams: 1 Andre 2.pdf: 12591094 bytes, checksum: 9d60541940ab5c84b9756dacce0a79fb (MD5) Previous issue date: 2021-12-10CAPESapplication/pdfporUniversidade Federal do MaranhãoPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCETUFMABrasilDEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCETdespacho econômico dinâmico;energia eólica;QPSO;PSO;mercado elétricodynamic economic dispatch;wind energy;QPSO;PSO;electric marketEngenharia ElétricaDespacho econômico dinâmico sob incertezas com inclusão de fontes de energia renovávelDynamic economic dispatch under uncertainties with the inclusion of sources of renewable energyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFMAinstname:Universidade Federal do Maranhão (UFMA)instacron:UFMAORIGINALAndre 2.pdfAndre 2.pdfapplication/pdf12591094http://tedebc.ufma.br:8080/bitstream/tede/3481/2/Andre+2.pdf9d60541940ab5c84b9756dacce0a79fbMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82255http://tedebc.ufma.br:8080/bitstream/tede/3481/1/license.txt97eeade1fce43278e63fe063657f8083MD51tede/34812022-02-11 10:56:17.65oai:tede2:tede/3481IExJQ0VOw4dBIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSxvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvciBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIE1hcmFuaMOjbyAoVUZNQSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVRk1BIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFVGTUEgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVUZNQSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBVRk1BLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVUZNQSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRGVjbGFyYSB0YW1iw6ltIHF1ZSB0b2RhcyBhcyBhZmlsaWHDp8O1ZXMgY29ycG9yYXRpdmFzIG91IGluc3RpdHVjaW9uYWlzIGUgdG9kYXMgYXMgZm9udGVzIGRlIGFwb2lvIGZpbmFuY2Vpcm8gYW8gdHJhYmFsaG8gZXN0w6NvIGRldmlkYW1lbnRlIGNpdGFkYXMgb3UgbWVuY2lvbmFkYXMgZSBjZXJ0aWZpY2EgcXVlIG7Do28gaMOhIG5lbmh1bSBpbnRlcmVzc2UgY29tZXJjaWFsIG91IGFzc29jaWF0aXZvIHF1ZSByZXByZXNlbnRlIGNvbmZsaXRvIGRlIGludGVyZXNzZSBlbSBjb25leMOjbyBjb20gbyB0cmFiYWxobyBzdWJtZXRpZG8uCgoKCgoKCgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tedebc.ufma.br/jspui/PUBhttp://tedebc.ufma.br:8080/oai/requestrepositorio@ufma.br||repositorio@ufma.bropendoar:21312022-02-11T13:56:17Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)false
dc.title.por.fl_str_mv Despacho econômico dinâmico sob incertezas com inclusão de fontes de energia renovável
dc.title.alternative.eng.fl_str_mv Dynamic economic dispatch under uncertainties with the inclusion of sources of renewable energy
title Despacho econômico dinâmico sob incertezas com inclusão de fontes de energia renovável
spellingShingle Despacho econômico dinâmico sob incertezas com inclusão de fontes de energia renovável
CANTANHEDE, André Carlos dos Santos
despacho econômico dinâmico;
energia eólica;
QPSO;
PSO;
mercado elétrico
dynamic economic dispatch;
wind energy;
QPSO;
PSO;
electric market
Engenharia Elétrica
title_short Despacho econômico dinâmico sob incertezas com inclusão de fontes de energia renovável
title_full Despacho econômico dinâmico sob incertezas com inclusão de fontes de energia renovável
title_fullStr Despacho econômico dinâmico sob incertezas com inclusão de fontes de energia renovável
title_full_unstemmed Despacho econômico dinâmico sob incertezas com inclusão de fontes de energia renovável
title_sort Despacho econômico dinâmico sob incertezas com inclusão de fontes de energia renovável
author CANTANHEDE, André Carlos dos Santos
author_facet CANTANHEDE, André Carlos dos Santos
author_role author
dc.contributor.advisor1.fl_str_mv PAUCAR CASAS, Vicente Leonardo
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1155686983267102
dc.contributor.advisor-co1.fl_str_mv COSTA FILHO, Raimundo Nonato Diniz
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/3573998478054699
dc.contributor.referee1.fl_str_mv PAUCAR CASAS, Vicente Leonardo
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/1155686983267102
dc.contributor.referee2.fl_str_mv COSTA FILHO, Raimundo Nonato Diniz
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3573998478054699
dc.contributor.referee3.fl_str_mv BRANCO, Tadeu da Mata Medeiros
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/8911039344594817
dc.contributor.referee4.fl_str_mv OLIVEIRA, Denisson Queiroz
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/6282010489262947
dc.contributor.author.fl_str_mv CANTANHEDE, André Carlos dos Santos
contributor_str_mv PAUCAR CASAS, Vicente Leonardo
COSTA FILHO, Raimundo Nonato Diniz
PAUCAR CASAS, Vicente Leonardo
COSTA FILHO, Raimundo Nonato Diniz
BRANCO, Tadeu da Mata Medeiros
OLIVEIRA, Denisson Queiroz
dc.subject.por.fl_str_mv despacho econômico dinâmico;
energia eólica;
QPSO;
PSO;
mercado elétrico
topic despacho econômico dinâmico;
energia eólica;
QPSO;
PSO;
mercado elétrico
dynamic economic dispatch;
wind energy;
QPSO;
PSO;
electric market
Engenharia Elétrica
dc.subject.eng.fl_str_mv dynamic economic dispatch;
wind energy;
QPSO;
PSO;
electric market
dc.subject.cnpq.fl_str_mv Engenharia Elétrica
description With the increase in renewable energy generation, several challenges arise for economic dispatch and changes in electricity markets. Dynamic economic dispatch is a complex optimization problem used to determine the generation schedule between the system's units, in a way that ensures the demand is met safely and reliably within a time horizon. The purpose of economic dispatch is to reduce marginal generation costs under restriction of operation, ramps and security of the units and the transmission system. With the addition of renewable energy sources and increasingly interconnected systems, economic dispatch problems have become increasingly complex. Thus, studies have analyzed new forms of optimization techniques for different forms of the problem, with the aim of improving the convergence point and computational time. This work aims to analyze the effects of the insertion of wind energy in dynamic economic dispatch. For this, the Quantum Particle Swarm Optimization (QPSO) meta heuristic was used and the cost of wind farms was calculated based on its analytical probabilistic production model. The proposed methodology was used in a system with 10 generators and a wind farm with meteorological data from Parnaíba-PI. For the study, different scenarios were analyzed in which the test system is linked to different wind farms, with generation concentrated in one bus and divided into two buses. In this study it is seen the influence of wind energy on the cost of operating the system. Furthermore, the uncertainty of wind energy generates costs linked to the forecast of expected generation of the wind farm combined with the reallocation of this load in the system. And finally the efficiency of the QPSO algorithm in the formulated DED problem.
publishDate 2021
dc.date.issued.fl_str_mv 2021-12-10
dc.date.accessioned.fl_str_mv 2022-02-11T13:56:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CANTANHEDE, André Carlos dos Santos. Despacho econômico dinâmico sob incertezas com inclusão de fontes de energia renovável. 2021. 48 f. Dissertação( Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2021.
dc.identifier.uri.fl_str_mv https://tedebc.ufma.br/jspui/handle/tede/tede/3481
identifier_str_mv CANTANHEDE, André Carlos dos Santos. Despacho econômico dinâmico sob incertezas com inclusão de fontes de energia renovável. 2021. 48 f. Dissertação( Programa de Pós-Graduação em Engenharia de Eletricidade/CCET) - Universidade Federal do Maranhão, São Luís, 2021.
url https://tedebc.ufma.br/jspui/handle/tede/tede/3481
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.publisher.program.fl_str_mv PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET
dc.publisher.initials.fl_str_mv UFMA
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
publisher.none.fl_str_mv Universidade Federal do Maranhão
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFMA
instname:Universidade Federal do Maranhão (UFMA)
instacron:UFMA
instname_str Universidade Federal do Maranhão (UFMA)
instacron_str UFMA
institution UFMA
reponame_str Biblioteca Digital de Teses e Dissertações da UFMA
collection Biblioteca Digital de Teses e Dissertações da UFMA
bitstream.url.fl_str_mv http://tedebc.ufma.br:8080/bitstream/tede/3481/2/Andre+2.pdf
http://tedebc.ufma.br:8080/bitstream/tede/3481/1/license.txt
bitstream.checksum.fl_str_mv 9d60541940ab5c84b9756dacce0a79fb
97eeade1fce43278e63fe063657f8083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFMA - Universidade Federal do Maranhão (UFMA)
repository.mail.fl_str_mv repositorio@ufma.br||repositorio@ufma.br
_version_ 1809926199779000320