Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories

Detalhes bibliográficos
Autor(a) principal: Dantas, Daniel
Data de Publicação: 2020
Outros Autores: Pinto, Luiz Otávio Rodrigues, Gonçalves, Anny Francielly Ataide, Terra, Marcela de Castro Nunes Santos, Calegario, Natalino
Tipo de documento: Artigo
Idioma: por
Título da fonte: Caderno de Ciências Agrárias (Online)
Texto Completo: https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15927
Resumo: The objective of this work was to evaluate the performance of a geostatistical estimator to estimate the wood volume per hectare of an eucalyptus stand, considering different sample intensities. The database was derived from pre-cut forest inventories, with a sampling intensity of one plot per 4.95 ha (approximately, 1:5), totaling 220 plots. Data were splitted into two groups: 80% for semivariograms fits and 20% for validation. Sampling units representing four different sample intensities (1:5, 1:10, 1:15 and 1:20) were selected and the semivariograms models were fitted. The models were then used to estimate the volumes per hectare of the parcels intended for validation. It was verified that the spherical models adjusted for the different sample intensities presented satisfactory and similar performances with each other, with mean relative errors lower than 10%. The lowest value was presented in the sampling intensity of 1:5, 7.33%, and the highest in the intensity of 1:20, 8.90%. An average relative error difference of only 1.57%. Therefore, it is possible to reduce the sample intensity in pre-cut inventories for Eucalyptus stands, without great losses in accuracy, with the use of point kriging to obtain the volume of wood per hectare in non-sampled points.  
id UFMG-1_9b5fa7f56af9aff0e3f1ffcb729c0078
oai_identifier_str oai:periodicos.ufmg.br:article/15927
network_acronym_str UFMG-1
network_name_str Caderno de Ciências Agrárias (Online)
repository_id_str
spelling Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventoriesPredição volumétrica por meio da krigagem pontual reduz o esforço de amostragem em inventários florestais pré-corteSemivariogramaInventário FlorestalIntensidade amostralSemivariogramForest inventoryGeostatistical modelThe objective of this work was to evaluate the performance of a geostatistical estimator to estimate the wood volume per hectare of an eucalyptus stand, considering different sample intensities. The database was derived from pre-cut forest inventories, with a sampling intensity of one plot per 4.95 ha (approximately, 1:5), totaling 220 plots. Data were splitted into two groups: 80% for semivariograms fits and 20% for validation. Sampling units representing four different sample intensities (1:5, 1:10, 1:15 and 1:20) were selected and the semivariograms models were fitted. The models were then used to estimate the volumes per hectare of the parcels intended for validation. It was verified that the spherical models adjusted for the different sample intensities presented satisfactory and similar performances with each other, with mean relative errors lower than 10%. The lowest value was presented in the sampling intensity of 1:5, 7.33%, and the highest in the intensity of 1:20, 8.90%. An average relative error difference of only 1.57%. Therefore, it is possible to reduce the sample intensity in pre-cut inventories for Eucalyptus stands, without great losses in accuracy, with the use of point kriging to obtain the volume of wood per hectare in non-sampled points.  O objetivo deste trabalho foi avaliar o desempenho de um estimador geoestatístico para estimar a volumetria de um povoamento de eucalipto com 8 anos de idade considerando diferentes intensidades amostrais. A base de dados foi proveniente de inventários florestais pré-corte. A intensidade amostral foi de uma parcela a cada 5 ha aproximadamente, totalizando 220 parcelas inventariadas em campo. Os dados foram divididos em dois grupos: 80% para ajuste dos semivariogramas e 20% para validação. Dentre os dados destinados aos ajustes, foram selecionadas parcelas que representassem quatro diferentes intensidades amostrais (1:5, 1:10, 1:15 e 1:20), e posteriormente, ajustados os modelos de semivariogramas. Os modelos foram então utilizados para estimar o volume das parcelas destinadas à validação. Os resultados permitiram inferir que o modelo esférico ajustado para as diferentes intensidades amostrais apresentou desempenho satisfatório e próximos entre si, com erros inferiores a 10 %. O menor valor foi apresentado na intensidade amostral de 1:5, 7,33 %, e o maior na intensidade de 1:20, 8,90 %, uma diferença de apenas 1,57 %. Assim sendo, foi possível concluir que o estimador geoestatístico permitiu a redução da intensidade amostral em inventários que antecedem o corte de povoamentos clonais de Eucalyptus, sem grandes perdas na precisão.Universidade Federal de Minas Gerais2020-06-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://periodicos.ufmg.br/index.php/ccaufmg/article/view/1592710.35699/2447-6218.2020.15927Agrarian Sciences Journal; Vol. 12 (2020); 1-9Caderno de Ciências Agrárias; v. 12 (2020); 1-92447-62181984-6738reponame:Caderno de Ciências Agrárias (Online)instname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGporhttps://periodicos.ufmg.br/index.php/ccaufmg/article/view/15927/18760https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15927/18761Copyright (c) 2020 Caderno de Ciências Agráriashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessDantas, DanielPinto, Luiz Otávio RodriguesGonçalves, Anny Francielly AtaideTerra, Marcela de Castro Nunes SantosCalegario, Natalino2022-07-28T16:05:40Zoai:periodicos.ufmg.br:article/15927Revistahttps://periodicos.ufmg.br/index.php/ccaufmgPUBhttps://periodicos.ufmg.br/index.php/ccaufmg/oaiccaufmg@ica.ufmg.br2447-62181984-6738opendoar:2022-07-28T16:05:40Caderno de Ciências Agrárias (Online) - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories
Predição volumétrica por meio da krigagem pontual reduz o esforço de amostragem em inventários florestais pré-corte
title Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories
spellingShingle Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories
Dantas, Daniel
Semivariograma
Inventário Florestal
Intensidade amostral
Semivariogram
Forest inventory
Geostatistical model
title_short Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories
title_full Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories
title_fullStr Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories
title_full_unstemmed Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories
title_sort Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories
author Dantas, Daniel
author_facet Dantas, Daniel
Pinto, Luiz Otávio Rodrigues
Gonçalves, Anny Francielly Ataide
Terra, Marcela de Castro Nunes Santos
Calegario, Natalino
author_role author
author2 Pinto, Luiz Otávio Rodrigues
Gonçalves, Anny Francielly Ataide
Terra, Marcela de Castro Nunes Santos
Calegario, Natalino
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Dantas, Daniel
Pinto, Luiz Otávio Rodrigues
Gonçalves, Anny Francielly Ataide
Terra, Marcela de Castro Nunes Santos
Calegario, Natalino
dc.subject.por.fl_str_mv Semivariograma
Inventário Florestal
Intensidade amostral
Semivariogram
Forest inventory
Geostatistical model
topic Semivariograma
Inventário Florestal
Intensidade amostral
Semivariogram
Forest inventory
Geostatistical model
description The objective of this work was to evaluate the performance of a geostatistical estimator to estimate the wood volume per hectare of an eucalyptus stand, considering different sample intensities. The database was derived from pre-cut forest inventories, with a sampling intensity of one plot per 4.95 ha (approximately, 1:5), totaling 220 plots. Data were splitted into two groups: 80% for semivariograms fits and 20% for validation. Sampling units representing four different sample intensities (1:5, 1:10, 1:15 and 1:20) were selected and the semivariograms models were fitted. The models were then used to estimate the volumes per hectare of the parcels intended for validation. It was verified that the spherical models adjusted for the different sample intensities presented satisfactory and similar performances with each other, with mean relative errors lower than 10%. The lowest value was presented in the sampling intensity of 1:5, 7.33%, and the highest in the intensity of 1:20, 8.90%. An average relative error difference of only 1.57%. Therefore, it is possible to reduce the sample intensity in pre-cut inventories for Eucalyptus stands, without great losses in accuracy, with the use of point kriging to obtain the volume of wood per hectare in non-sampled points.  
publishDate 2020
dc.date.none.fl_str_mv 2020-06-20
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15927
10.35699/2447-6218.2020.15927
url https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15927
identifier_str_mv 10.35699/2447-6218.2020.15927
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15927/18760
https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15927/18761
dc.rights.driver.fl_str_mv Copyright (c) 2020 Caderno de Ciências Agrárias
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Caderno de Ciências Agrárias
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv Agrarian Sciences Journal; Vol. 12 (2020); 1-9
Caderno de Ciências Agrárias; v. 12 (2020); 1-9
2447-6218
1984-6738
reponame:Caderno de Ciências Agrárias (Online)
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Caderno de Ciências Agrárias (Online)
collection Caderno de Ciências Agrárias (Online)
repository.name.fl_str_mv Caderno de Ciências Agrárias (Online) - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv ccaufmg@ica.ufmg.br
_version_ 1797042443487543296