Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Caderno de Ciências Agrárias (Online) |
Texto Completo: | https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15927 |
Resumo: | The objective of this work was to evaluate the performance of a geostatistical estimator to estimate the wood volume per hectare of an eucalyptus stand, considering different sample intensities. The database was derived from pre-cut forest inventories, with a sampling intensity of one plot per 4.95 ha (approximately, 1:5), totaling 220 plots. Data were splitted into two groups: 80% for semivariograms fits and 20% for validation. Sampling units representing four different sample intensities (1:5, 1:10, 1:15 and 1:20) were selected and the semivariograms models were fitted. The models were then used to estimate the volumes per hectare of the parcels intended for validation. It was verified that the spherical models adjusted for the different sample intensities presented satisfactory and similar performances with each other, with mean relative errors lower than 10%. The lowest value was presented in the sampling intensity of 1:5, 7.33%, and the highest in the intensity of 1:20, 8.90%. An average relative error difference of only 1.57%. Therefore, it is possible to reduce the sample intensity in pre-cut inventories for Eucalyptus stands, without great losses in accuracy, with the use of point kriging to obtain the volume of wood per hectare in non-sampled points. |
id |
UFMG-1_9b5fa7f56af9aff0e3f1ffcb729c0078 |
---|---|
oai_identifier_str |
oai:periodicos.ufmg.br:article/15927 |
network_acronym_str |
UFMG-1 |
network_name_str |
Caderno de Ciências Agrárias (Online) |
repository_id_str |
|
spelling |
Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventoriesPredição volumétrica por meio da krigagem pontual reduz o esforço de amostragem em inventários florestais pré-corteSemivariogramaInventário FlorestalIntensidade amostralSemivariogramForest inventoryGeostatistical modelThe objective of this work was to evaluate the performance of a geostatistical estimator to estimate the wood volume per hectare of an eucalyptus stand, considering different sample intensities. The database was derived from pre-cut forest inventories, with a sampling intensity of one plot per 4.95 ha (approximately, 1:5), totaling 220 plots. Data were splitted into two groups: 80% for semivariograms fits and 20% for validation. Sampling units representing four different sample intensities (1:5, 1:10, 1:15 and 1:20) were selected and the semivariograms models were fitted. The models were then used to estimate the volumes per hectare of the parcels intended for validation. It was verified that the spherical models adjusted for the different sample intensities presented satisfactory and similar performances with each other, with mean relative errors lower than 10%. The lowest value was presented in the sampling intensity of 1:5, 7.33%, and the highest in the intensity of 1:20, 8.90%. An average relative error difference of only 1.57%. Therefore, it is possible to reduce the sample intensity in pre-cut inventories for Eucalyptus stands, without great losses in accuracy, with the use of point kriging to obtain the volume of wood per hectare in non-sampled points. O objetivo deste trabalho foi avaliar o desempenho de um estimador geoestatístico para estimar a volumetria de um povoamento de eucalipto com 8 anos de idade considerando diferentes intensidades amostrais. A base de dados foi proveniente de inventários florestais pré-corte. A intensidade amostral foi de uma parcela a cada 5 ha aproximadamente, totalizando 220 parcelas inventariadas em campo. Os dados foram divididos em dois grupos: 80% para ajuste dos semivariogramas e 20% para validação. Dentre os dados destinados aos ajustes, foram selecionadas parcelas que representassem quatro diferentes intensidades amostrais (1:5, 1:10, 1:15 e 1:20), e posteriormente, ajustados os modelos de semivariogramas. Os modelos foram então utilizados para estimar o volume das parcelas destinadas à validação. Os resultados permitiram inferir que o modelo esférico ajustado para as diferentes intensidades amostrais apresentou desempenho satisfatório e próximos entre si, com erros inferiores a 10 %. O menor valor foi apresentado na intensidade amostral de 1:5, 7,33 %, e o maior na intensidade de 1:20, 8,90 %, uma diferença de apenas 1,57 %. Assim sendo, foi possível concluir que o estimador geoestatístico permitiu a redução da intensidade amostral em inventários que antecedem o corte de povoamentos clonais de Eucalyptus, sem grandes perdas na precisão.Universidade Federal de Minas Gerais2020-06-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://periodicos.ufmg.br/index.php/ccaufmg/article/view/1592710.35699/2447-6218.2020.15927Agrarian Sciences Journal; Vol. 12 (2020); 1-9Caderno de Ciências Agrárias; v. 12 (2020); 1-92447-62181984-6738reponame:Caderno de Ciências Agrárias (Online)instname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGporhttps://periodicos.ufmg.br/index.php/ccaufmg/article/view/15927/18760https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15927/18761Copyright (c) 2020 Caderno de Ciências Agráriashttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessDantas, DanielPinto, Luiz Otávio RodriguesGonçalves, Anny Francielly AtaideTerra, Marcela de Castro Nunes SantosCalegario, Natalino2022-07-28T16:05:40Zoai:periodicos.ufmg.br:article/15927Revistahttps://periodicos.ufmg.br/index.php/ccaufmgPUBhttps://periodicos.ufmg.br/index.php/ccaufmg/oaiccaufmg@ica.ufmg.br2447-62181984-6738opendoar:2022-07-28T16:05:40Caderno de Ciências Agrárias (Online) - Universidade Federal de Minas Gerais (UFMG)false |
dc.title.none.fl_str_mv |
Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories Predição volumétrica por meio da krigagem pontual reduz o esforço de amostragem em inventários florestais pré-corte |
title |
Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories |
spellingShingle |
Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories Dantas, Daniel Semivariograma Inventário Florestal Intensidade amostral Semivariogram Forest inventory Geostatistical model |
title_short |
Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories |
title_full |
Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories |
title_fullStr |
Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories |
title_full_unstemmed |
Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories |
title_sort |
Volumetric prediction through punctual kriging reduces sampling effort in pre-cut forest inventories |
author |
Dantas, Daniel |
author_facet |
Dantas, Daniel Pinto, Luiz Otávio Rodrigues Gonçalves, Anny Francielly Ataide Terra, Marcela de Castro Nunes Santos Calegario, Natalino |
author_role |
author |
author2 |
Pinto, Luiz Otávio Rodrigues Gonçalves, Anny Francielly Ataide Terra, Marcela de Castro Nunes Santos Calegario, Natalino |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Dantas, Daniel Pinto, Luiz Otávio Rodrigues Gonçalves, Anny Francielly Ataide Terra, Marcela de Castro Nunes Santos Calegario, Natalino |
dc.subject.por.fl_str_mv |
Semivariograma Inventário Florestal Intensidade amostral Semivariogram Forest inventory Geostatistical model |
topic |
Semivariograma Inventário Florestal Intensidade amostral Semivariogram Forest inventory Geostatistical model |
description |
The objective of this work was to evaluate the performance of a geostatistical estimator to estimate the wood volume per hectare of an eucalyptus stand, considering different sample intensities. The database was derived from pre-cut forest inventories, with a sampling intensity of one plot per 4.95 ha (approximately, 1:5), totaling 220 plots. Data were splitted into two groups: 80% for semivariograms fits and 20% for validation. Sampling units representing four different sample intensities (1:5, 1:10, 1:15 and 1:20) were selected and the semivariograms models were fitted. The models were then used to estimate the volumes per hectare of the parcels intended for validation. It was verified that the spherical models adjusted for the different sample intensities presented satisfactory and similar performances with each other, with mean relative errors lower than 10%. The lowest value was presented in the sampling intensity of 1:5, 7.33%, and the highest in the intensity of 1:20, 8.90%. An average relative error difference of only 1.57%. Therefore, it is possible to reduce the sample intensity in pre-cut inventories for Eucalyptus stands, without great losses in accuracy, with the use of point kriging to obtain the volume of wood per hectare in non-sampled points. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06-20 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15927 10.35699/2447-6218.2020.15927 |
url |
https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15927 |
identifier_str_mv |
10.35699/2447-6218.2020.15927 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15927/18760 https://periodicos.ufmg.br/index.php/ccaufmg/article/view/15927/18761 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Caderno de Ciências Agrárias https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Caderno de Ciências Agrárias https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
dc.source.none.fl_str_mv |
Agrarian Sciences Journal; Vol. 12 (2020); 1-9 Caderno de Ciências Agrárias; v. 12 (2020); 1-9 2447-6218 1984-6738 reponame:Caderno de Ciências Agrárias (Online) instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
instname_str |
Universidade Federal de Minas Gerais (UFMG) |
instacron_str |
UFMG |
institution |
UFMG |
reponame_str |
Caderno de Ciências Agrárias (Online) |
collection |
Caderno de Ciências Agrárias (Online) |
repository.name.fl_str_mv |
Caderno de Ciências Agrárias (Online) - Universidade Federal de Minas Gerais (UFMG) |
repository.mail.fl_str_mv |
ccaufmg@ica.ufmg.br |
_version_ |
1797042443487543296 |