Econometric ridge regression models of risk-sensitive sunflower yield

Detalhes bibliográficos
Autor(a) principal: Slozhenkina,M.I.
Data de Publicação: 2021
Outros Autores: Gorlov,I.F., Kholodov,O.A., Kholodova,M.A., Shakhbazova,O.P., Mosolova,D.A., Knyazhechenko,O.A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Arquivo brasileiro de medicina veterinária e zootecnia (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352021000601159
Resumo: ABSTRACT The article considers econometric ridge regression models of the risk-sensitive sunflower yield on the example of an export-oriented agricultural crop. In particular, we have proved that despite the functional mulcollinearity of the predictors in the sunflower yield model with respect to risk caused by the algorithm peculiarities of the hierarchy analysis methods, the ridge regression procedure makes it possible to obtain its complete specification and provide biased but stable estimates of the forecast parameters in the case of uncertain input variables. It has been substantiated that the rational value of the displacement parameters is expedient to be established using a graphical interpretation of the ridge wake as the border of fast and slow fluctuations in the estimates of the ridge regression coefficients. Econometric models were calculated using SPSS Statistics, Mathcad and FAR-AREA 4.0 software. The empirical basis for forecast calculations was the assessment of trends in sunflower production in all categories of farms in the Rostov region of Russia for the period of 2008-2018. The calculation results of econometric models made it possible to develop three author's scenarios for the sunflower production in the region, namely, inertial, moderate, and optimistic ones that consider the export-oriented strategy of the agro-industrial complex.
id UFMG-8_dfd3e1d4a610fc3755a6737cb750f74b
oai_identifier_str oai:scielo:S0102-09352021000601159
network_acronym_str UFMG-8
network_name_str Arquivo brasileiro de medicina veterinária e zootecnia (Online)
repository_id_str
spelling Econometric ridge regression models of risk-sensitive sunflower yieldforecastingagricultural productionexport-oriented strategyeconometric modelsridge regressionABSTRACT The article considers econometric ridge regression models of the risk-sensitive sunflower yield on the example of an export-oriented agricultural crop. In particular, we have proved that despite the functional mulcollinearity of the predictors in the sunflower yield model with respect to risk caused by the algorithm peculiarities of the hierarchy analysis methods, the ridge regression procedure makes it possible to obtain its complete specification and provide biased but stable estimates of the forecast parameters in the case of uncertain input variables. It has been substantiated that the rational value of the displacement parameters is expedient to be established using a graphical interpretation of the ridge wake as the border of fast and slow fluctuations in the estimates of the ridge regression coefficients. Econometric models were calculated using SPSS Statistics, Mathcad and FAR-AREA 4.0 software. The empirical basis for forecast calculations was the assessment of trends in sunflower production in all categories of farms in the Rostov region of Russia for the period of 2008-2018. The calculation results of econometric models made it possible to develop three author's scenarios for the sunflower production in the region, namely, inertial, moderate, and optimistic ones that consider the export-oriented strategy of the agro-industrial complex.Universidade Federal de Minas Gerais, Escola de Veterinária2021-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352021000601159Arquivo Brasileiro de Medicina Veterinária e Zootecnia v.73 n.5 2021reponame:Arquivo brasileiro de medicina veterinária e zootecnia (Online)instname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG10.1590/1678-4162-12367info:eu-repo/semantics/openAccessSlozhenkina,M.I.Gorlov,I.F.Kholodov,O.A.Kholodova,M.A.Shakhbazova,O.P.Mosolova,D.A.Knyazhechenko,O.A.eng2021-11-03T00:00:00Zoai:scielo:S0102-09352021000601159Revistahttps://www.scielo.br/j/abmvz/PUBhttps://old.scielo.br/oai/scielo-oai.phpjournal@vet.ufmg.br||abmvz.artigo@abmvz.org.br1678-41620102-0935opendoar:2021-11-03T00:00Arquivo brasileiro de medicina veterinária e zootecnia (Online) - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Econometric ridge regression models of risk-sensitive sunflower yield
title Econometric ridge regression models of risk-sensitive sunflower yield
spellingShingle Econometric ridge regression models of risk-sensitive sunflower yield
Slozhenkina,M.I.
forecasting
agricultural production
export-oriented strategy
econometric models
ridge regression
title_short Econometric ridge regression models of risk-sensitive sunflower yield
title_full Econometric ridge regression models of risk-sensitive sunflower yield
title_fullStr Econometric ridge regression models of risk-sensitive sunflower yield
title_full_unstemmed Econometric ridge regression models of risk-sensitive sunflower yield
title_sort Econometric ridge regression models of risk-sensitive sunflower yield
author Slozhenkina,M.I.
author_facet Slozhenkina,M.I.
Gorlov,I.F.
Kholodov,O.A.
Kholodova,M.A.
Shakhbazova,O.P.
Mosolova,D.A.
Knyazhechenko,O.A.
author_role author
author2 Gorlov,I.F.
Kholodov,O.A.
Kholodova,M.A.
Shakhbazova,O.P.
Mosolova,D.A.
Knyazhechenko,O.A.
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Slozhenkina,M.I.
Gorlov,I.F.
Kholodov,O.A.
Kholodova,M.A.
Shakhbazova,O.P.
Mosolova,D.A.
Knyazhechenko,O.A.
dc.subject.por.fl_str_mv forecasting
agricultural production
export-oriented strategy
econometric models
ridge regression
topic forecasting
agricultural production
export-oriented strategy
econometric models
ridge regression
description ABSTRACT The article considers econometric ridge regression models of the risk-sensitive sunflower yield on the example of an export-oriented agricultural crop. In particular, we have proved that despite the functional mulcollinearity of the predictors in the sunflower yield model with respect to risk caused by the algorithm peculiarities of the hierarchy analysis methods, the ridge regression procedure makes it possible to obtain its complete specification and provide biased but stable estimates of the forecast parameters in the case of uncertain input variables. It has been substantiated that the rational value of the displacement parameters is expedient to be established using a graphical interpretation of the ridge wake as the border of fast and slow fluctuations in the estimates of the ridge regression coefficients. Econometric models were calculated using SPSS Statistics, Mathcad and FAR-AREA 4.0 software. The empirical basis for forecast calculations was the assessment of trends in sunflower production in all categories of farms in the Rostov region of Russia for the period of 2008-2018. The calculation results of econometric models made it possible to develop three author's scenarios for the sunflower production in the region, namely, inertial, moderate, and optimistic ones that consider the export-oriented strategy of the agro-industrial complex.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352021000601159
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352021000601159
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1678-4162-12367
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais, Escola de Veterinária
publisher.none.fl_str_mv Universidade Federal de Minas Gerais, Escola de Veterinária
dc.source.none.fl_str_mv Arquivo Brasileiro de Medicina Veterinária e Zootecnia v.73 n.5 2021
reponame:Arquivo brasileiro de medicina veterinária e zootecnia (Online)
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Arquivo brasileiro de medicina veterinária e zootecnia (Online)
collection Arquivo brasileiro de medicina veterinária e zootecnia (Online)
repository.name.fl_str_mv Arquivo brasileiro de medicina veterinária e zootecnia (Online) - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv journal@vet.ufmg.br||abmvz.artigo@abmvz.org.br
_version_ 1750220895553585152