Econometric ridge regression models of risk-sensitive sunflower yield
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Arquivo brasileiro de medicina veterinária e zootecnia (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352021000601159 |
Resumo: | ABSTRACT The article considers econometric ridge regression models of the risk-sensitive sunflower yield on the example of an export-oriented agricultural crop. In particular, we have proved that despite the functional mulcollinearity of the predictors in the sunflower yield model with respect to risk caused by the algorithm peculiarities of the hierarchy analysis methods, the ridge regression procedure makes it possible to obtain its complete specification and provide biased but stable estimates of the forecast parameters in the case of uncertain input variables. It has been substantiated that the rational value of the displacement parameters is expedient to be established using a graphical interpretation of the ridge wake as the border of fast and slow fluctuations in the estimates of the ridge regression coefficients. Econometric models were calculated using SPSS Statistics, Mathcad and FAR-AREA 4.0 software. The empirical basis for forecast calculations was the assessment of trends in sunflower production in all categories of farms in the Rostov region of Russia for the period of 2008-2018. The calculation results of econometric models made it possible to develop three author's scenarios for the sunflower production in the region, namely, inertial, moderate, and optimistic ones that consider the export-oriented strategy of the agro-industrial complex. |
id |
UFMG-8_dfd3e1d4a610fc3755a6737cb750f74b |
---|---|
oai_identifier_str |
oai:scielo:S0102-09352021000601159 |
network_acronym_str |
UFMG-8 |
network_name_str |
Arquivo brasileiro de medicina veterinária e zootecnia (Online) |
repository_id_str |
|
spelling |
Econometric ridge regression models of risk-sensitive sunflower yieldforecastingagricultural productionexport-oriented strategyeconometric modelsridge regressionABSTRACT The article considers econometric ridge regression models of the risk-sensitive sunflower yield on the example of an export-oriented agricultural crop. In particular, we have proved that despite the functional mulcollinearity of the predictors in the sunflower yield model with respect to risk caused by the algorithm peculiarities of the hierarchy analysis methods, the ridge regression procedure makes it possible to obtain its complete specification and provide biased but stable estimates of the forecast parameters in the case of uncertain input variables. It has been substantiated that the rational value of the displacement parameters is expedient to be established using a graphical interpretation of the ridge wake as the border of fast and slow fluctuations in the estimates of the ridge regression coefficients. Econometric models were calculated using SPSS Statistics, Mathcad and FAR-AREA 4.0 software. The empirical basis for forecast calculations was the assessment of trends in sunflower production in all categories of farms in the Rostov region of Russia for the period of 2008-2018. The calculation results of econometric models made it possible to develop three author's scenarios for the sunflower production in the region, namely, inertial, moderate, and optimistic ones that consider the export-oriented strategy of the agro-industrial complex.Universidade Federal de Minas Gerais, Escola de Veterinária2021-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352021000601159Arquivo Brasileiro de Medicina Veterinária e Zootecnia v.73 n.5 2021reponame:Arquivo brasileiro de medicina veterinária e zootecnia (Online)instname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG10.1590/1678-4162-12367info:eu-repo/semantics/openAccessSlozhenkina,M.I.Gorlov,I.F.Kholodov,O.A.Kholodova,M.A.Shakhbazova,O.P.Mosolova,D.A.Knyazhechenko,O.A.eng2021-11-03T00:00:00Zoai:scielo:S0102-09352021000601159Revistahttps://www.scielo.br/j/abmvz/PUBhttps://old.scielo.br/oai/scielo-oai.phpjournal@vet.ufmg.br||abmvz.artigo@abmvz.org.br1678-41620102-0935opendoar:2021-11-03T00:00Arquivo brasileiro de medicina veterinária e zootecnia (Online) - Universidade Federal de Minas Gerais (UFMG)false |
dc.title.none.fl_str_mv |
Econometric ridge regression models of risk-sensitive sunflower yield |
title |
Econometric ridge regression models of risk-sensitive sunflower yield |
spellingShingle |
Econometric ridge regression models of risk-sensitive sunflower yield Slozhenkina,M.I. forecasting agricultural production export-oriented strategy econometric models ridge regression |
title_short |
Econometric ridge regression models of risk-sensitive sunflower yield |
title_full |
Econometric ridge regression models of risk-sensitive sunflower yield |
title_fullStr |
Econometric ridge regression models of risk-sensitive sunflower yield |
title_full_unstemmed |
Econometric ridge regression models of risk-sensitive sunflower yield |
title_sort |
Econometric ridge regression models of risk-sensitive sunflower yield |
author |
Slozhenkina,M.I. |
author_facet |
Slozhenkina,M.I. Gorlov,I.F. Kholodov,O.A. Kholodova,M.A. Shakhbazova,O.P. Mosolova,D.A. Knyazhechenko,O.A. |
author_role |
author |
author2 |
Gorlov,I.F. Kholodov,O.A. Kholodova,M.A. Shakhbazova,O.P. Mosolova,D.A. Knyazhechenko,O.A. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Slozhenkina,M.I. Gorlov,I.F. Kholodov,O.A. Kholodova,M.A. Shakhbazova,O.P. Mosolova,D.A. Knyazhechenko,O.A. |
dc.subject.por.fl_str_mv |
forecasting agricultural production export-oriented strategy econometric models ridge regression |
topic |
forecasting agricultural production export-oriented strategy econometric models ridge regression |
description |
ABSTRACT The article considers econometric ridge regression models of the risk-sensitive sunflower yield on the example of an export-oriented agricultural crop. In particular, we have proved that despite the functional mulcollinearity of the predictors in the sunflower yield model with respect to risk caused by the algorithm peculiarities of the hierarchy analysis methods, the ridge regression procedure makes it possible to obtain its complete specification and provide biased but stable estimates of the forecast parameters in the case of uncertain input variables. It has been substantiated that the rational value of the displacement parameters is expedient to be established using a graphical interpretation of the ridge wake as the border of fast and slow fluctuations in the estimates of the ridge regression coefficients. Econometric models were calculated using SPSS Statistics, Mathcad and FAR-AREA 4.0 software. The empirical basis for forecast calculations was the assessment of trends in sunflower production in all categories of farms in the Rostov region of Russia for the period of 2008-2018. The calculation results of econometric models made it possible to develop three author's scenarios for the sunflower production in the region, namely, inertial, moderate, and optimistic ones that consider the export-oriented strategy of the agro-industrial complex. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352021000601159 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352021000601159 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1678-4162-12367 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais, Escola de Veterinária |
publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais, Escola de Veterinária |
dc.source.none.fl_str_mv |
Arquivo Brasileiro de Medicina Veterinária e Zootecnia v.73 n.5 2021 reponame:Arquivo brasileiro de medicina veterinária e zootecnia (Online) instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
instname_str |
Universidade Federal de Minas Gerais (UFMG) |
instacron_str |
UFMG |
institution |
UFMG |
reponame_str |
Arquivo brasileiro de medicina veterinária e zootecnia (Online) |
collection |
Arquivo brasileiro de medicina veterinária e zootecnia (Online) |
repository.name.fl_str_mv |
Arquivo brasileiro de medicina veterinária e zootecnia (Online) - Universidade Federal de Minas Gerais (UFMG) |
repository.mail.fl_str_mv |
journal@vet.ufmg.br||abmvz.artigo@abmvz.org.br |
_version_ |
1750220895553585152 |