Detalhes bibliográficos
Título da fonte: Repositório Institucional da UFMG
id UFMG_02c5a9f5d89f23dad9e8b367a96acedf
oai_identifier_str oai:repositorio.ufmg.br:1843/41685
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
reponame_str Repositório Institucional da UFMG
instacron_str UFMG
institution Universidade Federal de Minas Gerais (UFMG)
instname_str Universidade Federal de Minas Gerais (UFMG)
spelling Fábio Nogueira Demarquihttp://lattes.cnpq.br/2746210170266413Antônio Carlos Pedroso de LimaLeonardo Soares BastosDani GamermanMarcos Oliveira Prateshttp://lattes.cnpq.br/1901761488296633Walmir dos Reis Miranda Filho2022-05-13T23:36:10Z2022-05-13T23:36:10Z2022-03-24http://hdl.handle.net/1843/41685Clustered survival data can arise if the event of interest (the failure) is recurrent and more than one observed time is registered for each subject (which forms a cluster) under study, and the number of observed times is fixed for all subjects. Since survival data associated with the same cluster is expected to be correlated, it should be modeled in order to account for that dependence. Copula models became an appropriate framework to model clustered survival data, linking marginal survival functions to form a joint survival distribution. Much of the literature on survival copula models is concentrated on results marginally using only the Weibull model as the baseline distribution and the Proportional Hazards model as the regression structure when working with clustered survival data or supposing an informative censoring model for univariate survival data. This work proposes new survival copula models under a random and independent right-censoring assumption, addressing a variety of marginal baseline distributions (Weibull, Bernstein Polynomials, and Piecewise Exponential models) and regression model classes (Proportional Hazards, Proportional Odds, and Yang-Prentice models). Concerning the copulas themselves, each one among those treated in this work belongs to the Archimedean copula class, a family of copulas widely used in survival analysis due to some important properties. Five Archimedean copula models were addressed in this work: Ali-Mikhail-Haq; Clayton; Frank; Gumbel-Hougaard, and Joe. To evaluate and compare the proposed survival copula models, results for an extensive simulation study and a real data application were obtained. For the simulated data, variations can occur on the copula function and on the marginal baseline distribution or regression model class used for generation. Also, simulation scenarios were divided by true Kendall's tau correlation values for the copula model chosen for generation. When fitting the simulated data, better results are obtained for fitted models with the correct copula, given a specification of baseline distribution and regression structure. Moreover, even generating marginally from the Weibull model, results for fitted semiparametric models follow closely those obtained when fitting the Weibull model, being better (in general) for marginally generated data from the Exponentiated Weibull distribution, among the models fitted with the correct copula. For all survival copula models presented in this work, an R package is currently in development, containing specific functions for fitting and analysis.Dados de sobrevivência clusterizados podem surgir se o evento de interesse (a falha) é recorrente e mais de um tempo observado é registrado para cada indivíduo (o qual forma um cluster) sob estudo, e a quantidade de tempos observados é fixa para todos os indivíduos. Como se espera que dados de sobrevivência associados a um mesmo cluster estejam correlacionados, a modelagem dos mesmos deve considerar esta dependência. Modelos de cópula se tornaram uma estrutura útil para a modelagem de dados de sobrevivência clusterizados, conectando funções de sobrevivência marginais para construir uma distribuição conjunta de sobrevivência. Muito da literatura sobre modelos de cópula de sobrevivência está restrita a resultados para o uso do modelo Weibull como a distribuição marginal da linha de base e do modelo de Riscos Proporcionais como a estrutura marginal de regressão ao se trabalhar com dados de sobrevivência clusterizados, ou a resultados para modelos de censura informativa aplicados a dados de sobrevivência univariados. Este trabalho propõe, sob o pressuposto de censura à direita aleatória e independente, novos modelos de cópula de sobrevivência abordando uma variedade de distribuições para a linha de base marginal (modelos Weibull, Polinômios de Bernstein e Exponencial por Partes) e de classes de modelos de regressão (Riscos Proporcionais, de Chances Proporcionais e Yang-Prentice). Com respeito às cópulas, cada uma dentre as tratadas neste trabalho pertence à classe de cópulas arquimedianas, uma família de cópulas amplamente utilizada em análise de sobrevivência devido a propriedades importantes. Cinco cópulas arquimedianas foram abordadas neste trabalho: Ali-Mikhail-Haq; Clayton; Frank; Gumbel-Hougaard e Joe. Para avaliar e comparar os modelos de cópula de sobrevivência propostos, foram obtidos resultados para um estudo extensivo de simulação, bem como para uma aplicação de dados reais. Para os dados simulados, variações podem ocorrer na cópula e na classe de modelos de regressão marginal. Além disso, os cenários para simulação foram divididos por valores verdadeiros supostos para a correlação tau de Kendall, dado o modelo de cópula escolhido para a geração. Ao ajustar os dados simulados, resultados melhores são obtidos para modelos ajustados com a cópula correta, dada uma especificação da distribuição para a linha de base e da estrutura de regressão. Além disso, mesmo gerando do modelo Weibull, resultados para ajustes de modelos semiparamétricos seguem de perto os obtidos ao ajustar o modelo Weibull, dentre os modelos ajustados com a cópula correta, sendo melhores (em geral) para dados marginalmente gerados da distribuição Weibull Exponenciada. Para todos os modelos de cópula de sobrevivência apresentados neste trabalho, um pacote R está atualmente em desenvolvimento, contendo funções específicas para ajuste e análise.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em EstatísticaUFMGBrasilICX - DEPARTAMENTO DE ESTATÍSTICAEstatística – TesesAnálise de sobrevivência (Biometria) – TesesAnálise funcional – TesesAnálise de regressão – TesesArchimedean copulasMarginal survival functionsBaseline distributionsRegression model classesSemiparametric modeling for multivariate survival data via copulasModelagem semiparamétrica para dados de sobrevivência multivariados via cópulasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALTese - Walmir dRMF - Versão Final.pdfTese - Walmir dRMF - Versão Final.pdfapplication/pdf2883907https://repositorio.ufmg.br/bitstream/1843/41685/3/Tese%20-%20Walmir%20dRMF%20-%20Vers%c3%a3o%20Final.pdfbe7d026e3c65b3da859a6c88292949a5MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/41685/4/license.txtcda590c95a0b51b4d15f60c9642ca272MD541843/416852022-05-13 20:36:10.702oai:repositorio.ufmg.br:1843/41685TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oaiopendoar:2022-05-13T23:36:10Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
_version_ 1813547908094492672