Estudo das pressões máximas no evaporador de uma bomba de calor de expansão direta à R744 assistida por energia solar

Detalhes bibliográficos
Autor(a) principal: Jéssica Cristina Campos Miranda Silva
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/59052
Resumo: The use of heat pumps to heat water instead of electric heaters is a way to reduce energy consumption and consequently greenhouse gas emissions. In this context, carbon dioxide (CO2 or R744) as a refrigerant has drawn the attention of several researchers in the field of refrigeration. Several works in the literature evaluated the performance of the heat pump, economic performance, energy performance, exergy performance, influence of the geometry in the solar evaporator, but no works were found that presented the behavior of the pressure in the evaporator of a heat pump at R744 in the cycle transcritical. In this context, this work presents a mathematical model for the heat pump evaporator (DX-SAHP) that evaluates the behavior of the pressure in the evaporator when it is not operating, but exposed to the sun, and the impacts of these pressures on the structural integrity of the components, considering a mass amount of R744 trapped inside the evaporator varying between 8% and 12%. The meteorological data for solving the mathematical model were taken from the INMET website, studying data from Belo Horizonte since 2012 and in the other four regions of Brazil, focusing on the year 2022. The maximum pressure of R744 for 12% of mass inside the evaporator was of about 12.2 MPa while the maximum working pressure in the evaporator recommended by the tube manufacturer is 13.2 MPa.
id UFMG_05878cd893e1172aefcfb47085979321
oai_identifier_str oai:repositorio.ufmg.br:1843/59052
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Estudo das pressões máximas no evaporador de uma bomba de calor de expansão direta à R744 assistida por energia solarModelo numéricoDX-SAHPPressão no evaporadorBomba de calor solar assistidaR744 (CO2)Engenharia mecânicaEnergia - ConsumoSustentabilidadeEvaporadoresBombas de calorDióxido de carbonoEnergia solarModelos matemáticosEfeito estufa (Atmosfera)The use of heat pumps to heat water instead of electric heaters is a way to reduce energy consumption and consequently greenhouse gas emissions. In this context, carbon dioxide (CO2 or R744) as a refrigerant has drawn the attention of several researchers in the field of refrigeration. Several works in the literature evaluated the performance of the heat pump, economic performance, energy performance, exergy performance, influence of the geometry in the solar evaporator, but no works were found that presented the behavior of the pressure in the evaporator of a heat pump at R744 in the cycle transcritical. In this context, this work presents a mathematical model for the heat pump evaporator (DX-SAHP) that evaluates the behavior of the pressure in the evaporator when it is not operating, but exposed to the sun, and the impacts of these pressures on the structural integrity of the components, considering a mass amount of R744 trapped inside the evaporator varying between 8% and 12%. The meteorological data for solving the mathematical model were taken from the INMET website, studying data from Belo Horizonte since 2012 and in the other four regions of Brazil, focusing on the year 2022. The maximum pressure of R744 for 12% of mass inside the evaporator was of about 12.2 MPa while the maximum working pressure in the evaporator recommended by the tube manufacturer is 13.2 MPa.A utilização de bombas de calor para aquecer água em vez de aquecedores elétricos é uma forma de reduzir o consumo de energia e consequentemente as emissões de gases do efeito estufa. Nesse contexto, o dióxido de carbono (CO2 ou R744) como fluido refrigerante tem chamado a atenção de diversos pesquisadores da área de refrigeração. Vários trabalhos na literatura avaliaram o desempenho da bomba de calor, desempenho econômico, desempenho energético, desempenho exergético, influência da geometria no evaporador solar, mas não foram encontrados trabalhos que apresentassem o comportamento da pressão no evaporador de uma bomba de calor à R744 no ciclo transcrítico. Nesse contexto, este trabalho apresenta um modelo matemático para o evaporador da bomba de calor (DX-SAHP) que avalia o comportamento da pressão no evaporador quando este não está operando, mas exposto ao sol, e os impactos dessas pressões na integridade estrutural dos componentes, considerando uma quantidade de massa de R744 aprisionada dentro do evaporador variando entre 8% e 12%. Os dados meteorológicos para resolução do modelo matemático foram retirados do site do INMET estudando dados de Belo Horizonte desde 2012 e nas outras quatro regiões do Brasil, com foco no ano de 2022. A pressão máxima do R744 para 12% de massa dentro do evaporador foi de cerca de 12,2 MPa enquanto a pressão máxima de trabalho no evaporador recomendada pelo fabricante do tubo é de 13,2MPa.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de Minas GeraisBrasilENG - DEPARTAMENTO DE ENGENHARIA MECÂNICAPrograma de Pós-Graduação em Engenharia MecanicaUFMGWillian Moreira Duartehttp://lattes.cnpq.br/0182036855915957Tiago de Freitas PaulinoRafael Augusto Magalhaes FerreiraCleison Henrique de PaulaJéssica Cristina Campos Miranda Silva2023-10-02T17:21:46Z2023-10-02T17:21:46Z2023-08-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/1843/59052porhttp://creativecommons.org/licenses/by/3.0/pt/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2023-10-02T17:21:47Zoai:repositorio.ufmg.br:1843/59052Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2023-10-02T17:21:47Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Estudo das pressões máximas no evaporador de uma bomba de calor de expansão direta à R744 assistida por energia solar
title Estudo das pressões máximas no evaporador de uma bomba de calor de expansão direta à R744 assistida por energia solar
spellingShingle Estudo das pressões máximas no evaporador de uma bomba de calor de expansão direta à R744 assistida por energia solar
Jéssica Cristina Campos Miranda Silva
Modelo numérico
DX-SAHP
Pressão no evaporador
Bomba de calor solar assistida
R744 (CO2)
Engenharia mecânica
Energia - Consumo
Sustentabilidade
Evaporadores
Bombas de calor
Dióxido de carbono
Energia solar
Modelos matemáticos
Efeito estufa (Atmosfera)
title_short Estudo das pressões máximas no evaporador de uma bomba de calor de expansão direta à R744 assistida por energia solar
title_full Estudo das pressões máximas no evaporador de uma bomba de calor de expansão direta à R744 assistida por energia solar
title_fullStr Estudo das pressões máximas no evaporador de uma bomba de calor de expansão direta à R744 assistida por energia solar
title_full_unstemmed Estudo das pressões máximas no evaporador de uma bomba de calor de expansão direta à R744 assistida por energia solar
title_sort Estudo das pressões máximas no evaporador de uma bomba de calor de expansão direta à R744 assistida por energia solar
author Jéssica Cristina Campos Miranda Silva
author_facet Jéssica Cristina Campos Miranda Silva
author_role author
dc.contributor.none.fl_str_mv Willian Moreira Duarte
http://lattes.cnpq.br/0182036855915957
Tiago de Freitas Paulino
Rafael Augusto Magalhaes Ferreira
Cleison Henrique de Paula
dc.contributor.author.fl_str_mv Jéssica Cristina Campos Miranda Silva
dc.subject.por.fl_str_mv Modelo numérico
DX-SAHP
Pressão no evaporador
Bomba de calor solar assistida
R744 (CO2)
Engenharia mecânica
Energia - Consumo
Sustentabilidade
Evaporadores
Bombas de calor
Dióxido de carbono
Energia solar
Modelos matemáticos
Efeito estufa (Atmosfera)
topic Modelo numérico
DX-SAHP
Pressão no evaporador
Bomba de calor solar assistida
R744 (CO2)
Engenharia mecânica
Energia - Consumo
Sustentabilidade
Evaporadores
Bombas de calor
Dióxido de carbono
Energia solar
Modelos matemáticos
Efeito estufa (Atmosfera)
description The use of heat pumps to heat water instead of electric heaters is a way to reduce energy consumption and consequently greenhouse gas emissions. In this context, carbon dioxide (CO2 or R744) as a refrigerant has drawn the attention of several researchers in the field of refrigeration. Several works in the literature evaluated the performance of the heat pump, economic performance, energy performance, exergy performance, influence of the geometry in the solar evaporator, but no works were found that presented the behavior of the pressure in the evaporator of a heat pump at R744 in the cycle transcritical. In this context, this work presents a mathematical model for the heat pump evaporator (DX-SAHP) that evaluates the behavior of the pressure in the evaporator when it is not operating, but exposed to the sun, and the impacts of these pressures on the structural integrity of the components, considering a mass amount of R744 trapped inside the evaporator varying between 8% and 12%. The meteorological data for solving the mathematical model were taken from the INMET website, studying data from Belo Horizonte since 2012 and in the other four regions of Brazil, focusing on the year 2022. The maximum pressure of R744 for 12% of mass inside the evaporator was of about 12.2 MPa while the maximum working pressure in the evaporator recommended by the tube manufacturer is 13.2 MPa.
publishDate 2023
dc.date.none.fl_str_mv 2023-10-02T17:21:46Z
2023-10-02T17:21:46Z
2023-08-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/59052
url http://hdl.handle.net/1843/59052
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/3.0/pt/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/3.0/pt/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
Brasil
ENG - DEPARTAMENTO DE ENGENHARIA MECÂNICA
Programa de Pós-Graduação em Engenharia Mecanica
UFMG
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
Brasil
ENG - DEPARTAMENTO DE ENGENHARIA MECÂNICA
Programa de Pós-Graduação em Engenharia Mecanica
UFMG
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1823248289299955712