Active probing to highlight approaching transitions to ictal states in coupled neural mass models

Detalhes bibliográficos
Autor(a) principal: Vinícius Rezende Carvalho
Data de Publicação: 2021
Outros Autores: Marcio Flavio Dutra Moraes, Sydney Cash, Eduardo Mazoni Andrade Marçal Mendes
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Institucional da UFMG
Texto Completo: https://doi.org/10.1371/journal.pcbi.1008377
http://hdl.handle.net/1843/56951
https://orcid.org/0000-0003-1821-1634
https://orcid.org/0000-0002-4557-6391
https://orcid.org/0000-0002-3267-3862
Resumo: The extraction of electrophysiological features that reliably forecast the occurrence of seizures is one of the most challenging goals in epilepsy research. Among possible approaches to tackle this problem is the use of active probing paradigms in which responses to stimuli are used to detect underlying system changes leading up to seizures. This work evaluates the theoretical and mechanistic underpinnings of this strategy using two coupled populations of the well-studied Wendling neural mass model. Different model settings are evaluated, shifting parameters (excitability, slow inhibition, or inter-population coupling gains) from normal towards ictal states while probing stimuli are applied every 2 seconds to the input of either one or both populations. The correlation between the extracted features and the ictogenic parameter shifting indicates if the impending transition to the ictal state may be identified in advance. Results show that not only can the response to the probing stimuli forecast seizures but this is true regardless of the altered ictogenic parameter. That is, similar feature changes are highlighted by probing stimuli responses in advance of the seizure including: increased response variance and lag-1 autocorrelation, decreased skewness, and increased mutual information between the outputs of both model subsets. These changes were mostly restricted to the stimulated population, showing a local effect of this perturbational approach. The transition latencies from normal activity to sustained discharges of spikes were not affected, suggesting that stimuli had no pro-ictal effects. However, stimuli were found to elicit interictal-like spikes just before the transition to the ictal state. Furthermore, the observed feature changes highlighted by probing the neuronal populations may reflect the phenomenon of critical slowing down, where increased recovery times from perturbations may signal the loss of a systems’ resilience and are common hallmarks of an impending critical transition. These results provide more evidence that active probing approaches highlight information about underlying system changes involved in ictogenesis and may be able to play a role in assisting seizure forecasting methods which can be incorporated into early-warning systems that ultimately enable closing the loop for targeted seizure-controlling interventions.
id UFMG_1088f481589e9cefd02d72c303af3297
oai_identifier_str oai:repositorio.ufmg.br:1843/56951
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling 2023-07-25T17:26:41Z2023-07-25T17:26:41Z2021171124https://doi.org/10.1371/journal.pcbi.10083771553-7358http://hdl.handle.net/1843/56951https://orcid.org/0000-0003-1821-1634https://orcid.org/0000-0002-4557-6391https://orcid.org/0000-0002-3267-3862The extraction of electrophysiological features that reliably forecast the occurrence of seizures is one of the most challenging goals in epilepsy research. Among possible approaches to tackle this problem is the use of active probing paradigms in which responses to stimuli are used to detect underlying system changes leading up to seizures. This work evaluates the theoretical and mechanistic underpinnings of this strategy using two coupled populations of the well-studied Wendling neural mass model. Different model settings are evaluated, shifting parameters (excitability, slow inhibition, or inter-population coupling gains) from normal towards ictal states while probing stimuli are applied every 2 seconds to the input of either one or both populations. The correlation between the extracted features and the ictogenic parameter shifting indicates if the impending transition to the ictal state may be identified in advance. Results show that not only can the response to the probing stimuli forecast seizures but this is true regardless of the altered ictogenic parameter. That is, similar feature changes are highlighted by probing stimuli responses in advance of the seizure including: increased response variance and lag-1 autocorrelation, decreased skewness, and increased mutual information between the outputs of both model subsets. These changes were mostly restricted to the stimulated population, showing a local effect of this perturbational approach. The transition latencies from normal activity to sustained discharges of spikes were not affected, suggesting that stimuli had no pro-ictal effects. However, stimuli were found to elicit interictal-like spikes just before the transition to the ictal state. Furthermore, the observed feature changes highlighted by probing the neuronal populations may reflect the phenomenon of critical slowing down, where increased recovery times from perturbations may signal the loss of a systems’ resilience and are common hallmarks of an impending critical transition. These results provide more evidence that active probing approaches highlight information about underlying system changes involved in ictogenesis and may be able to play a role in assisting seizure forecasting methods which can be incorporated into early-warning systems that ultimately enable closing the loop for targeted seizure-controlling interventions.porUniversidade Federal de Minas GeraisUFMGBrasilENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICAICB - DEPARTAMENTO DE FISIOLOGIA E BIOFÍSICAPLOS Computational BiologyEpilepsiaNeural mass modelsEpilepsyActive probing to highlight approaching transitions to ictal states in coupled neural mass modelsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008377Vinícius Rezende CarvalhoMarcio Flavio Dutra MoraesSydney CashEduardo Mazoni Andrade Marçal Mendesinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGLICENSELicense.txtLicense.txttext/plain; charset=utf-82042https://repositorio.ufmg.br/bitstream/1843/56951/1/License.txtfa505098d172de0bc8864fc1287ffe22MD51ORIGINALActive probing to highlight approaching transitions to ictal states in coupled neural mass models.pdfActive probing to highlight approaching transitions to ictal states in coupled neural mass models.pdfapplication/pdf66033637https://repositorio.ufmg.br/bitstream/1843/56951/2/Active%20probing%20to%20highlight%20approaching%20transitions%20to%20ictal%20states%20in%20coupled%20neural%20mass%20models.pdf0376ce033aba0878e199c1d77e55bf0fMD521843/569512023-07-25 14:26:41.358oai:repositorio.ufmg.br:1843/56951TElDRU7vv71BIERFIERJU1RSSUJVSe+/ve+/vU8gTu+/vU8tRVhDTFVTSVZBIERPIFJFUE9TSVTvv71SSU8gSU5TVElUVUNJT05BTCBEQSBVRk1HCiAKCkNvbSBhIGFwcmVzZW50Ye+/ve+/vW8gZGVzdGEgbGljZW7vv71hLCB2b2Pvv70gKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIGFvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbu+/vW8gZXhjbHVzaXZvIGUgaXJyZXZvZ++/vXZlbCBkZSByZXByb2R1emlyIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNh77+977+9byAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0cu+/vW5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mg77+9dWRpbyBvdSB277+9ZGVvLgoKVm9j77+9IGRlY2xhcmEgcXVlIGNvbmhlY2UgYSBwb2zvv710aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2Pvv70gY29uY29yZGEgcXVlIG8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250Ze+/vWRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNh77+977+9byBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHvv73vv71vLgoKVm9j77+9IHRhbWLvv71tIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPvv71waWEgZGUgc3VhIHB1YmxpY2Hvv73vv71vIHBhcmEgZmlucyBkZSBzZWd1cmFu77+9YSwgYmFjay11cCBlIHByZXNlcnZh77+977+9by4KClZvY++/vSBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNh77+977+9byDvv70gb3JpZ2luYWwgZSBxdWUgdm9j77+9IHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vu77+9YS4gVm9j77+9IHRhbWLvv71tIGRlY2xhcmEgcXVlIG8gZGVw77+9c2l0byBkZSBzdWEgcHVibGljYe+/ve+/vW8gbu+/vW8sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd177+9bS4KCkNhc28gYSBzdWEgcHVibGljYe+/ve+/vW8gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY++/vSBu77+9byBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2Pvv70gZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc++/vW8gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7vv71hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250Ze+/vWRvIGRhIHB1YmxpY2Hvv73vv71vIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0Hvv73vv71PIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ++/vU5JTyBPVSBBUE9JTyBERSBVTUEgQUfvv71OQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0Pvv70gREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklT77+9TyBDT01PIFRBTULvv71NIEFTIERFTUFJUyBPQlJJR0Hvv73vv71FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l077+9cmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNh77+977+9bywgZSBu77+9byBmYXLvv70gcXVhbHF1ZXIgYWx0ZXJh77+977+9bywgYWzvv71tIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7vv71hLgo=Repositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2023-07-25T17:26:41Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv Active probing to highlight approaching transitions to ictal states in coupled neural mass models
title Active probing to highlight approaching transitions to ictal states in coupled neural mass models
spellingShingle Active probing to highlight approaching transitions to ictal states in coupled neural mass models
Vinícius Rezende Carvalho
Neural mass models
Epilepsy
Epilepsia
title_short Active probing to highlight approaching transitions to ictal states in coupled neural mass models
title_full Active probing to highlight approaching transitions to ictal states in coupled neural mass models
title_fullStr Active probing to highlight approaching transitions to ictal states in coupled neural mass models
title_full_unstemmed Active probing to highlight approaching transitions to ictal states in coupled neural mass models
title_sort Active probing to highlight approaching transitions to ictal states in coupled neural mass models
author Vinícius Rezende Carvalho
author_facet Vinícius Rezende Carvalho
Marcio Flavio Dutra Moraes
Sydney Cash
Eduardo Mazoni Andrade Marçal Mendes
author_role author
author2 Marcio Flavio Dutra Moraes
Sydney Cash
Eduardo Mazoni Andrade Marçal Mendes
author2_role author
author
author
dc.contributor.author.fl_str_mv Vinícius Rezende Carvalho
Marcio Flavio Dutra Moraes
Sydney Cash
Eduardo Mazoni Andrade Marçal Mendes
dc.subject.por.fl_str_mv Neural mass models
Epilepsy
topic Neural mass models
Epilepsy
Epilepsia
dc.subject.other.pt_BR.fl_str_mv Epilepsia
description The extraction of electrophysiological features that reliably forecast the occurrence of seizures is one of the most challenging goals in epilepsy research. Among possible approaches to tackle this problem is the use of active probing paradigms in which responses to stimuli are used to detect underlying system changes leading up to seizures. This work evaluates the theoretical and mechanistic underpinnings of this strategy using two coupled populations of the well-studied Wendling neural mass model. Different model settings are evaluated, shifting parameters (excitability, slow inhibition, or inter-population coupling gains) from normal towards ictal states while probing stimuli are applied every 2 seconds to the input of either one or both populations. The correlation between the extracted features and the ictogenic parameter shifting indicates if the impending transition to the ictal state may be identified in advance. Results show that not only can the response to the probing stimuli forecast seizures but this is true regardless of the altered ictogenic parameter. That is, similar feature changes are highlighted by probing stimuli responses in advance of the seizure including: increased response variance and lag-1 autocorrelation, decreased skewness, and increased mutual information between the outputs of both model subsets. These changes were mostly restricted to the stimulated population, showing a local effect of this perturbational approach. The transition latencies from normal activity to sustained discharges of spikes were not affected, suggesting that stimuli had no pro-ictal effects. However, stimuli were found to elicit interictal-like spikes just before the transition to the ictal state. Furthermore, the observed feature changes highlighted by probing the neuronal populations may reflect the phenomenon of critical slowing down, where increased recovery times from perturbations may signal the loss of a systems’ resilience and are common hallmarks of an impending critical transition. These results provide more evidence that active probing approaches highlight information about underlying system changes involved in ictogenesis and may be able to play a role in assisting seizure forecasting methods which can be incorporated into early-warning systems that ultimately enable closing the loop for targeted seizure-controlling interventions.
publishDate 2021
dc.date.issued.fl_str_mv 2021
dc.date.accessioned.fl_str_mv 2023-07-25T17:26:41Z
dc.date.available.fl_str_mv 2023-07-25T17:26:41Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/56951
dc.identifier.doi.pt_BR.fl_str_mv https://doi.org/10.1371/journal.pcbi.1008377
dc.identifier.issn.pt_BR.fl_str_mv 1553-7358
dc.identifier.orcid.pt_BR.fl_str_mv https://orcid.org/0000-0003-1821-1634
https://orcid.org/0000-0002-4557-6391
https://orcid.org/0000-0002-3267-3862
url https://doi.org/10.1371/journal.pcbi.1008377
http://hdl.handle.net/1843/56951
https://orcid.org/0000-0003-1821-1634
https://orcid.org/0000-0002-4557-6391
https://orcid.org/0000-0002-3267-3862
identifier_str_mv 1553-7358
dc.language.iso.fl_str_mv por
language por
dc.relation.ispartof.pt_BR.fl_str_mv PLOS Computational Biology
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ENG - DEPARTAMENTO DE ENGENHARIA ELETRÔNICA
ICB - DEPARTAMENTO DE FISIOLOGIA E BIOFÍSICA
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/56951/1/License.txt
https://repositorio.ufmg.br/bitstream/1843/56951/2/Active%20probing%20to%20highlight%20approaching%20transitions%20to%20ictal%20states%20in%20coupled%20neural%20mass%20models.pdf
bitstream.checksum.fl_str_mv fa505098d172de0bc8864fc1287ffe22
0376ce033aba0878e199c1d77e55bf0f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1801676937084534784