spelling |
Rodrygo Luis Teodoro Santoshttp://lattes.cnpq.br/1162362624079364Nivio ZivianiAltigran Soares da SilvaMarcos André Gonçalveshttp://lattes.cnpq.br/7329858225436491Rafael Glater da Cruz Machado2019-10-17T20:20:51Z2019-10-17T20:20:51Z2017-04-07http://hdl.handle.net/1843/30489Query understanding is a challenging task primarily due to the inherent ambiguity of natural language. A common strategy for improving the understanding of natural language queries is to annotate them with semantic information mined from a knowledge base. Nevertheless, queries with different intents may arguably benefit from specialized annotation strategies. For instance, some queries could be effectively annotated with a single entity or an entity attribute, others could be better represented by a list of entities of a single type or by entities of multiple distinct types, and others may be simply ambiguous. In this dissertation, we propose a framework for learning semantic query annotations suitable to the target intent of each individual query. Thorough experiments on a publicly available benchmark show that our proposed approach can significantly improve state-of-the-art intent-agnostic approaches based on Markov random fields and learning to rank. Our results further demonstrate the consistent effectiveness of our approach for queries of various target intents, lengths, and difficulty levels, as well as its robustness to noise in intent detection.O entendimento de uma consulta é uma tarefa desafiadora, principalmente devido à ambigüidade inerente da linguagem natural. Uma estratégia comum para melhorar a compreensão das consultas em linguagem natural é anotá-las com informações semânticas extraídas de uma base de conhecimento. No entanto, consultas com diferentes intenções podem se beneficiar de diferentes estratégias de anotação. Por exemplo, algumas consultas podem ser efetivamente anotadas com uma única entidade ou um atributo de entidade, outras podem ser melhor representadas por uma lista de entidades de um único tipo ou por entidades de vários tipos distintos, e outras podem ser simplesmente ambíguas. Nesta dissertação, propomos um framework para aprendizagem de anotações semânticas em consultas de acordo com a intenção existente em cada uma. Experimentos minuciosos em um benchmark publicamente disponível mostram que a abordagem proposta pode melhorar significativamente quando comparadas às abordagens agnósticas baseadas em campos aleatórios de Markov e de aprendizado de ranqueamento. Nossos resultados demonstram ainda, de forma consistente, a eficácia de nossa abordagem para consultas de várias intenções, comprimentos e níveis de dificuldade, bem como sua robustez ao ruído na detecção de intenção.engUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em Ciência da ComputaçãoUFMGBrasilAprendizado de ranqueamentoRecuperação de informaçãoAprendizado de ranqueamentoRecuperação da informaçãoAprendizado de representaçõesBusca semânticaAnotação semântica em consultasIntent-aware semantic query annotationAnotações semânticas em consultas baseada na intenção do usuárioinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALRafaelGlaterdaCruzMachado.pdfRafaelGlaterdaCruzMachado.pdfapplication/pdf2242627https://repositorio.ufmg.br/bitstream/1843/30489/2/RafaelGlaterdaCruzMachado.pdf3de9f1b5066a753f028d0dc53030b5a8MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82119https://repositorio.ufmg.br/bitstream/1843/30489/3/license.txt34badce4be7e31e3adb4575ae96af679MD53TEXTRafaelGlaterdaCruzMachado.pdf.txtRafaelGlaterdaCruzMachado.pdf.txtExtracted texttext/plain134389https://repositorio.ufmg.br/bitstream/1843/30489/4/RafaelGlaterdaCruzMachado.pdf.txtd6260160e608a9073a6f0b9f1df3d853MD541843/304892019-11-14 12:32:16.97oai:repositorio.ufmg.br:1843/30489TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KCg==Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oaiopendoar:2019-11-14T15:32:16Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
|