The fundamental properties of phyllosilicates and its hydration at the nanoscale by water confinement

Detalhes bibliográficos
Autor(a) principal: Raphaela de Oliveira Gonçalves
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFMG
Texto Completo: http://hdl.handle.net/1843/61587
https://orcid.org/0000-0003-1391-6694
Resumo: Water is the matrix of life and its confinement in nanocavities is a central topic from geophysics to nanotribology. Phyllosilicate layered minerals are natural nanocavities for water due to their capacity to hydrate by confining water molecules in the interlamellar space. Abundant on Earth, the occurrence of phyllosilicate minerals on other planets is a signature of water presence. However, the hydration of phyllosilicates at nanoscale is not a fully understood process and depends on the geological specimens. On the other hand, phyllosilicate minerals are insulators with a large bandgap and associated low-cost that have been recently explored in the fabrication of nanodevices. Because they are of natural origin, the presence of impurities is common. Thus, it is crucial to understand how impurities and hydration by the nanoconfinement of water change the fundamental properties of phyllosilicates in their few-layer form for two-dimensional (2D) applications. Exploring clinochlore from the chlorite group and phlogopite from the trioctahedral mica group, this thesis aims to expand the understanding of the fundamental properties and hydration of phyllosilicates in their few-layer form. First, a robust experimental characterization of the structure, morphology and defects and impurities of the samples was carried out. With this, it was possible to provide a complete description of the 2D structure of clinochlore and phlogopite and their fundamental properties from their bulk form. To elucidate how variations in the atomic structure of these barely explored specimens of phyllosilicates favor the geo-confinement of water and its properties, a deep analysis of the nanoconfinement of water in both phyllosilicates was conducted. Using advanced nanoprobe techniques, it was possible to obtain the vibrational properties of phyllosilicates in their few-layer form and to determine that nanoconfined water changes the mechanical and dielectric properties of the minerals. The results obtained suggest that the confined water can condense forming \textit{ice-like} arrangements at room temperature, being stable to relative humidity variation, but unstable to temperature increase. As a unique result, a controlled method for mechanical nanomanipulation of interlamellar water was demonstrated. Notably, this thesis opens doors to the multifunctionalization of phyllosilicate minerals in their few-layer form aiming applications at the frontiers of nanotechnology - from catalysis, microfluidics, and patterning of biomolecules to sensing, and fabrication of optoelectronic nanodevices.
id UFMG_243ec2e760f5e7c4c7494de54acc5321
oai_identifier_str oai:repositorio.ufmg.br:1843/61587
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Klaus Wilhelm Heinrich Krambrockhttp://lattes.cnpq.br/3513735339604253Ângelo Malachias de SouzaIngrid David BarcelosHelio ChachamDouglas Soares GalvãoMarcelo Barbosa de AndradeBernardo Ruegger Almeida Neveshttp://lattes.cnpq.br/6446106187184462Raphaela de Oliveira Gonçalves2023-11-30T19:07:19Z2023-11-30T19:07:19Z2023-10-23http://hdl.handle.net/1843/61587https://orcid.org/0000-0003-1391-6694Water is the matrix of life and its confinement in nanocavities is a central topic from geophysics to nanotribology. Phyllosilicate layered minerals are natural nanocavities for water due to their capacity to hydrate by confining water molecules in the interlamellar space. Abundant on Earth, the occurrence of phyllosilicate minerals on other planets is a signature of water presence. However, the hydration of phyllosilicates at nanoscale is not a fully understood process and depends on the geological specimens. On the other hand, phyllosilicate minerals are insulators with a large bandgap and associated low-cost that have been recently explored in the fabrication of nanodevices. Because they are of natural origin, the presence of impurities is common. Thus, it is crucial to understand how impurities and hydration by the nanoconfinement of water change the fundamental properties of phyllosilicates in their few-layer form for two-dimensional (2D) applications. Exploring clinochlore from the chlorite group and phlogopite from the trioctahedral mica group, this thesis aims to expand the understanding of the fundamental properties and hydration of phyllosilicates in their few-layer form. First, a robust experimental characterization of the structure, morphology and defects and impurities of the samples was carried out. With this, it was possible to provide a complete description of the 2D structure of clinochlore and phlogopite and their fundamental properties from their bulk form. To elucidate how variations in the atomic structure of these barely explored specimens of phyllosilicates favor the geo-confinement of water and its properties, a deep analysis of the nanoconfinement of water in both phyllosilicates was conducted. Using advanced nanoprobe techniques, it was possible to obtain the vibrational properties of phyllosilicates in their few-layer form and to determine that nanoconfined water changes the mechanical and dielectric properties of the minerals. The results obtained suggest that the confined water can condense forming \textit{ice-like} arrangements at room temperature, being stable to relative humidity variation, but unstable to temperature increase. As a unique result, a controlled method for mechanical nanomanipulation of interlamellar water was demonstrated. Notably, this thesis opens doors to the multifunctionalization of phyllosilicate minerals in their few-layer form aiming applications at the frontiers of nanotechnology - from catalysis, microfluidics, and patterning of biomolecules to sensing, and fabrication of optoelectronic nanodevices.A água é a matriz da vida e seu confinamento em nanocavidades é um tema central desde a geofísica até a nanotribologia. Os minerais filossilicatos de estrutura em camadas atuam como nanocavidades naturais para a água devido à sua capacidade de se hidratarem ao confinar as moléculas de água no espaço interlamelar. Abundantes na Terra, a ocorrência de minerais filossilicatos em outros planetas é uma assinatura da presença de água. No entanto, a hidratação de filossilicatos na nanoescala não é um processo totalmente compreendido e varia entre os espécimes geológicos. Por outro lado, os minerais filossilicatos são isolantes de largo \textit{bandgap} e baixo-custo associado que têm sido recentemente explorados na fabricação de nanodispositivos. Por serem de origem natural, é comum a presença de impurezas. Dessa forma, é crucial entender como as impurezas e a hidratação através do nanoconfinamento de água alteram as propriedades fundamentais dos filossilicatos em sua forma de poucas camadas visando aplicações bi-dimensionais (2D). Explorando o clinocloro do grupo das cloritas e a flogopita do grupo das micas trioctaédricas, esta tese visa expandir o conhecimento das propriedades fundamentais e hidratação dos filossilicatos na forma de poucas camadas. Primeiramente, realizou-se uma caracterização experimental robusta da estrutura, morfologia e de defeitos e impurezas das amostras. Com isso, foi possível fornecer uma descrição completa da estrutura 2D do clinocloro e flogopita e suas propriedades fundamentais a partir da forma bulk. Para elucidar como variações na estrutura atômica desses espécimes pouco explorados de filossilicatos favorecem o geoconfinamento da água e suas propriedades, uma ampla análise do nanoconfinamento de água em ambos filossilicatos foi conduzida. Através de técnicas avançadas de varredura por nanossonda, foi possível obter as propriedades vibracionais dos filossilicatos na sua forma de poucas camadas e determinar que a água nanoconfinada altera as propriedades mecânicas e dielétricas dos minerais. Os resultados obtidos sugerem que a água confinada pode se condensar formando gelo à temperatura ambiente, sendo estável à variação de umidade relativa, mas instável ao aumento de temperatura. Como resultado único, demonstrou-se um método controlado de nanomanipulação mecânica da água interlamelar. Notavelmente, esta tese abre portas para a multifuncionalização dos minerais filossilicatos em sua forma de poucas camadas visando aplicações nas fronteiras da nanotecnologia - desde catálise, microfluídica e conformação de biomoléculas até sensoriamento e fabricação de nanodispositivos optoeletrônicos.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorINCT – Instituto nacional de ciência e tecnologia (Antigo Instituto do Milênio)FAPESP - Fundação de Amparo à Pesquisa do Estado de São PauloengUniversidade Federal de Minas GeraisPrograma de Pós-Graduação em FísicaUFMGBrasilICX - DEPARTAMENTO DE FÍSICAFilossilicatosÁguaNanomateriaisMicroscopia de varredura por sondaPhyllosilicatesNanoconfinement of waterNear-field microscopyScanning probe microscopyThe fundamental properties of phyllosilicates and its hydration at the nanoscale by water confinementinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMGORIGINALTESE_FINAL_RO-compressed.pdfTESE_FINAL_RO-compressed.pdfapplication/pdf10045541https://repositorio.ufmg.br/bitstream/1843/61587/3/TESE_FINAL_RO-compressed.pdf5138a3c5f012ccbc4b89e8cf2c3cc728MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82118https://repositorio.ufmg.br/bitstream/1843/61587/4/license.txtcda590c95a0b51b4d15f60c9642ca272MD541843/615872023-11-30 16:07:19.65oai:repositorio.ufmg.br:1843/61587TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEgRE8gUkVQT1NJVMOTUklPIElOU1RJVFVDSU9OQUwgREEgVUZNRwoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSBhbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIChSSS1VRk1HKSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZSBpcnJldm9nw6F2ZWwgZGUgcmVwcm9kdXppciBlL291IGRpc3RyaWJ1aXIgYSBzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBkZWNsYXJhIHF1ZSBjb25oZWNlIGEgcG9sw610aWNhIGRlIGNvcHlyaWdodCBkYSBlZGl0b3JhIGRvIHNldSBkb2N1bWVudG8gZSBxdWUgY29uaGVjZSBlIGFjZWl0YSBhcyBEaXJldHJpemVzIGRvIFJJLVVGTUcuCgpWb2PDqiBjb25jb3JkYSBxdWUgbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRk1HIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBmaW5zIGRlIHNlZ3VyYW7Dp2EsIGJhY2stdXAgZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRlIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHB1YmxpY2HDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHB1YmxpY2HDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBQVUJMSUNBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCk8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZNRyBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lKHMpIG91IG8ocykgbm9tZXMocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório de PublicaçõesPUBhttps://repositorio.ufmg.br/oaiopendoar:2023-11-30T19:07:19Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.pt_BR.fl_str_mv The fundamental properties of phyllosilicates and its hydration at the nanoscale by water confinement
title The fundamental properties of phyllosilicates and its hydration at the nanoscale by water confinement
spellingShingle The fundamental properties of phyllosilicates and its hydration at the nanoscale by water confinement
Raphaela de Oliveira Gonçalves
Phyllosilicates
Nanoconfinement of water
Near-field microscopy
Scanning probe microscopy
Filossilicatos
Água
Nanomateriais
Microscopia de varredura por sonda
title_short The fundamental properties of phyllosilicates and its hydration at the nanoscale by water confinement
title_full The fundamental properties of phyllosilicates and its hydration at the nanoscale by water confinement
title_fullStr The fundamental properties of phyllosilicates and its hydration at the nanoscale by water confinement
title_full_unstemmed The fundamental properties of phyllosilicates and its hydration at the nanoscale by water confinement
title_sort The fundamental properties of phyllosilicates and its hydration at the nanoscale by water confinement
author Raphaela de Oliveira Gonçalves
author_facet Raphaela de Oliveira Gonçalves
author_role author
dc.contributor.advisor1.fl_str_mv Klaus Wilhelm Heinrich Krambrock
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3513735339604253
dc.contributor.advisor-co1.fl_str_mv Ângelo Malachias de Souza
dc.contributor.referee1.fl_str_mv Ingrid David Barcelos
dc.contributor.referee2.fl_str_mv Helio Chacham
dc.contributor.referee3.fl_str_mv Douglas Soares Galvão
dc.contributor.referee4.fl_str_mv Marcelo Barbosa de Andrade
dc.contributor.referee5.fl_str_mv Bernardo Ruegger Almeida Neves
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6446106187184462
dc.contributor.author.fl_str_mv Raphaela de Oliveira Gonçalves
contributor_str_mv Klaus Wilhelm Heinrich Krambrock
Ângelo Malachias de Souza
Ingrid David Barcelos
Helio Chacham
Douglas Soares Galvão
Marcelo Barbosa de Andrade
Bernardo Ruegger Almeida Neves
dc.subject.por.fl_str_mv Phyllosilicates
Nanoconfinement of water
Near-field microscopy
Scanning probe microscopy
topic Phyllosilicates
Nanoconfinement of water
Near-field microscopy
Scanning probe microscopy
Filossilicatos
Água
Nanomateriais
Microscopia de varredura por sonda
dc.subject.other.pt_BR.fl_str_mv Filossilicatos
Água
Nanomateriais
Microscopia de varredura por sonda
description Water is the matrix of life and its confinement in nanocavities is a central topic from geophysics to nanotribology. Phyllosilicate layered minerals are natural nanocavities for water due to their capacity to hydrate by confining water molecules in the interlamellar space. Abundant on Earth, the occurrence of phyllosilicate minerals on other planets is a signature of water presence. However, the hydration of phyllosilicates at nanoscale is not a fully understood process and depends on the geological specimens. On the other hand, phyllosilicate minerals are insulators with a large bandgap and associated low-cost that have been recently explored in the fabrication of nanodevices. Because they are of natural origin, the presence of impurities is common. Thus, it is crucial to understand how impurities and hydration by the nanoconfinement of water change the fundamental properties of phyllosilicates in their few-layer form for two-dimensional (2D) applications. Exploring clinochlore from the chlorite group and phlogopite from the trioctahedral mica group, this thesis aims to expand the understanding of the fundamental properties and hydration of phyllosilicates in their few-layer form. First, a robust experimental characterization of the structure, morphology and defects and impurities of the samples was carried out. With this, it was possible to provide a complete description of the 2D structure of clinochlore and phlogopite and their fundamental properties from their bulk form. To elucidate how variations in the atomic structure of these barely explored specimens of phyllosilicates favor the geo-confinement of water and its properties, a deep analysis of the nanoconfinement of water in both phyllosilicates was conducted. Using advanced nanoprobe techniques, it was possible to obtain the vibrational properties of phyllosilicates in their few-layer form and to determine that nanoconfined water changes the mechanical and dielectric properties of the minerals. The results obtained suggest that the confined water can condense forming \textit{ice-like} arrangements at room temperature, being stable to relative humidity variation, but unstable to temperature increase. As a unique result, a controlled method for mechanical nanomanipulation of interlamellar water was demonstrated. Notably, this thesis opens doors to the multifunctionalization of phyllosilicate minerals in their few-layer form aiming applications at the frontiers of nanotechnology - from catalysis, microfluidics, and patterning of biomolecules to sensing, and fabrication of optoelectronic nanodevices.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-11-30T19:07:19Z
dc.date.available.fl_str_mv 2023-11-30T19:07:19Z
dc.date.issued.fl_str_mv 2023-10-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/61587
dc.identifier.orcid.pt_BR.fl_str_mv https://orcid.org/0000-0003-1391-6694
url http://hdl.handle.net/1843/61587
https://orcid.org/0000-0003-1391-6694
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Física
dc.publisher.initials.fl_str_mv UFMG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv ICX - DEPARTAMENTO DE FÍSICA
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
bitstream.url.fl_str_mv https://repositorio.ufmg.br/bitstream/1843/61587/3/TESE_FINAL_RO-compressed.pdf
https://repositorio.ufmg.br/bitstream/1843/61587/4/license.txt
bitstream.checksum.fl_str_mv 5138a3c5f012ccbc4b89e8cf2c3cc728
cda590c95a0b51b4d15f60c9642ca272
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv
_version_ 1803589545549103104